我给你一个线索,他们开发了一种全新的阴极材料。现在我再给你一个线索。如果你去 Lyten 主页 2 ,该页面上的第一行文字是:“Lyten 是一家先进材料公司,开发了 Lyten 3D Graphene ®,这是一个获得专利的材料库,它推动了储能、复合系统以及化学和无源传感器领域的突破。Lyten 的原始三维石墨烯材料极大地改善了其他材料的特性,当配制成我们先进的电池化学成分时,可通过 Sulfur-Caging™ 释放 Li-S 储能的真正潜力。用于电动汽车的 Lyten 电池可提供更高的能量密度,从而延长行驶里程、加快充电速度、大大提高安全性,并且碳足迹是所有电池中最低的……
与交付,外观,性能,维度和权重的范围有关的信息对应于发表时可用的信息。为了产生产品开发的利益,我们保留更改交付,外观,设计和颜色范围的权利,而无需事先通知。产品图像可能因实际产品而异,并且可能显示可单独购买的可选配件。错误和遗漏除外。
摘要 本综述讨论了当前可充电铝电池(RAB)阳离子插层和转化型正极材料的研究现状。分析了Al 3+插层在氯铝酸离子液体和水系电解液中过渡金属氧化物、硫属化合物、MXene和普鲁士蓝类似物中的实验证据,以确定其真正的反应机理。Chevrel相硫化钼(Mo 6 S 8 )是唯一具有明确证据证明的RAB插层材料,讨论了对Mo 6 S 8中Al 3+插层机制的不同理解。对于转化型正极材料,重点讨论了金属硫属化合物的转化机理,以及氯铝酸离子液体电解质实现的独特的硫和硒的可逆氧化机理。还讨论了有机正极材料的反应机理。
Epsilor 的 COMBATT 系列锂离子和磷酸铁锂车载电池具有同类产品中最高的能量密度。与同类铅酸电池相比,该电池组重量轻六倍,体积仅为四分之一,旨在为各种国防车辆提供服务,例如 MBT、IFV、APC、火炮系统、无人驾驶和自动驾驶车辆以及战术掩体,这些车辆的条件恶劣,需要可靠的清洁能源。COMBATT 电池提供多种配置,支持长时间静音监视、启动器、再生和任何其他现场应用。
硬碳(HC)是网格级钠离子电池(NIB)的有吸引力的阳极材料,这是由于碳的广泛可用性,其高特定能力和低电化学工作潜力。然而,需要解决第一周期库仑的效率和较差的HC的问题,以使其成为NIB的实用长期解决方案。这些缺点似乎是电解质依赖性的,因为与碳酸盐电解质相比,基于醚的电解质可以在很大程度上改善性能。对这些性能差异背后机制的解释对于高度可逆的钠储存的合理设计至关重要。结合气相色谱,拉曼光谱,低温传递电子显微镜和X射线光电子光谱,这项工作表明,固体电解质中相(SEI)是基于乙醚和碳酸电解质之间的关键不同,这确定了电荷转移Kinetics和parasitic反应的范围。尽管两个电解质都没有在HC散装结构中储存的残留钠,但基于醚的电解液形成的均匀和共形SEI可以提高循环的效率和速率性能。这些发现突出显示了通过界面工程使用HC阳极实现长寿命级笔尖的途径。
铜金属由于其低电阻率和对电子的高电阻性而高度偏爱微电子的相互作用。[1]微电子设备中最小特征的尺寸计划到2022年达到3 nm限制,[2]设定了越来越严格的需求,以使该技术沉积该设备制造的连续低电阻式CUFILMS。原子层沉积(ALD)是一种基于相互脉冲前体的领先的气相薄膜技术 - 是微电子行业的理想选择,因为它固有地提供了高度的相结合薄膜,而不是复杂的几何形状和高光谱比率结构,并且可以使用高含量比率结构,并且可以覆盖厚度较高。[3] Challenge是为了找到行业,有效和可靠的ALD
磷酸锂不符合PBT和VPVB的标准,根据1907/2006号法规,附件XIII。石墨不符合PBT和VPVB的标准,根据法规(EC)第1907/2006号,附件XIII。铜不符合PBT和VPVB的标准,根据法规(EC)1907/2006号,附件XIII。铝不符合PBT和VPVB的标准,根据法规(EC)1907/2006号,附件XIII。poly(乙烯基二氟化物)根据法规(EC)No 1907/2006,附件XIII。碳黑色不符合PBT和VPVB的标准,根据法规(EC)1907/2006号,附件XIII。根据调节(EC)1907/2006,附件XIII不符合PBT和VPVB的标准。hexafluophophate锂不符合PBT和VPVB的标准,根据1907/2006号法规,附件XIII。镍不符合PBT和VPVB的标准,根据法规(EC)1907/2006号,附件XIII。
摘要:可再生能源发电是应对能源消耗快速增长的一种有希望的解决方案。然而,可再生资源(如风能、太阳能和潮汐能)的可用性是不连续和暂时的,这对下一代大型储能装置的生产提出了新的要求。由于成本低、原材料极其丰富、安全性高和环境友好,水系可充电多价金属离子电池(AMMIB)最近引起了广泛关注。然而,一些挑战阻碍了 AMMIB 的发展,包括其电化学稳定性较窄、离子扩散动力学较差以及电极不稳定。过渡金属二硫属化物(TMD)因其独特的化学和物理性质而被广泛研究用于储能装置。层状 TMD 的宽层间距离对于离子扩散和插层来说是一种很有吸引力的特性。本综述重点介绍了 TMD 作为基于多价电荷载体(Zn 2+ 、Mg 2+ 和 Al 3+ )的水系可充电电池阴极材料的最新进展。通过本综述,重点介绍了高性能 AMMIB 的 TMD 材料的关键方面。此外,还讨论了开发改进型 TMD 的其他建议和策略,以启发新的研究方向。