我们开发了一种基于自主量子热机的经典计算物理模型。这些机器由连接到不同温度的几个环境的少数相互作用的量子比特 (qubit) 组成。这里利用流经机器的热流进行计算。该过程首先根据逻辑输入设置环境的温度。机器不断发展,最终达到非平衡稳定状态,从中可以通过辅助有限尺寸储层的温度确定计算的输出。这种机器,我们称之为“热力学神经元”,可以实现任何线性可分函数,我们明确讨论了 NOT、3-MAJORITY 和 NOR 门的情况。反过来,我们表明热力学神经元网络可以执行任何所需的功能。我们讨论了我们的模型与人工神经元(感知器)之间的密切联系,并认为我们的模型提供了一种基于物理的替代神经网络模拟实现,更广泛地说,是一种热力学计算平台。
人工智能 (AI) 有着数十年的悠久传统。1956 年,麦卡锡在达特茅斯会议上首次提出了“人工智能”这个名称,从此开启了这一研究领域的热潮,并一直延续至今 (McCarthy et al., 2006)。人工智能最初的重点是符号模型和推理,随后出现了第一波神经网络 (NN) 和专家系统 (ES) 的浪潮 (Rosenblatt, 1957; Newel and Simon, 1976; Crevier, 1993)。当明斯基和帕普特 (Minsky and Papert, 1969) 证明感知器在学习非线性可分函数(例如异或 (XOR))时存在问题时,该领域遭受了严重挫折。这极大地影响了人工智能在随后几年的发展,尤其是在神经网络领域。然而,在 20 世纪 80 年代,神经网络通过反向传播算法的发明而卷土重来(Rumelhart 等人,1986 年)。后来在 20 世纪 90 年代,关于智能代理的研究引起了广泛的兴趣(Wooldridge 和 Jennings,1995 年),例如探索感知和行为的耦合效应(Wolpert 和 Kawato,1998 年;Emmert-Streib,2003 年)。最后,在 21 世纪初,大数据的出现,导致了神经网络以深度神经网络 (DNN) 的形式再次复兴(Hochreiter 和 Schmidhuber,1997 年;Hinton 等人,2006 年;O'Leary,2013 年;LeCun 等人,2015 年)。这些年来,人工智能在机器人、语音识别、面部识别、医疗保健和金融等许多领域取得了巨大成功(Bahrammirzaee,2010;Brooks,1991;Krizhevsky 等人,2012;Hochreiter 和 Schmidhuber,1997;Thrun,2002;Yu 等人,2018)。重要的是,这些问题并不都属于一个领域,例如计算机科学,而是涉及心理学、神经科学、经济学和医学等多个学科。鉴于人工智能应用的广泛性和所用方法的多样性,毫不奇怪,看似