该路线图的第三版沿袭了前两个版本的主要内容,同时更新了电池研究、开发和商业化方面的最新进展。它概述了从根本上改变我们发现、开发、设计和制造电池材料、组件和电池单元的方式以供实际应用的雄心。我们的目标仍然是共同努力,让欧洲共同研究超高性能、耐用、安全、可持续且价格合理的电池,并支持建立欧洲电池单元制造的迫切需求。随着 Bat4ever、Hidden、Instabat、Sensibat 和 Spartacus 项目即将结束,该路线图还包括每个项目的一些预最终结果。2023 年 5 月至 9 月,六个新项目将加入 Battery 2030+ 计划,分别是 Healingbat、Opera、Opincharge、Phoenix、Salamander 和 Ultrabat。2024 年,与可制造性和可回收性相关的项目将加入。
量子网络和量子计算技术目前面临的扩展障碍归根结底是同一个核心挑战,即大规模分布高质量纠缠。在本文中,我们提出了一种基于硅中光学活性自旋的新型量子信息处理架构,该架构为可扩展的容错量子计算和网络提供了一个综合的单一技术平台。该架构针对整体纠缠分布进行了优化,并利用硅中的色心自旋(T 中心)的可制造性、光子接口和高保真信息处理特性。硅纳米光子光路允许 T 中心之间建立光子链接,这些 T 中心通过高度连通的电信波段光子联网。这种高连接性解锁了低开销量子纠错码的使用,大大加快了模块化、可扩展的容错量子中继器和量子处理器的时间表。
摘要 —随着电路特征尺寸的不断缩小,热点检测已成为现代可制造性设计流程中更具挑战性的问题。发达的深度学习技术最近显示出其在热点检测任务上的优势。然而,现有的热点检测器每次只能处理来自一个小的布局片段的缺陷检测,因此在处理大型全芯片布局时可能非常耗时。在本文中,我们开发了一个新的端到端框架,可以一次检测大区域中的多个热点,并保证更好的热点检测性能。我们设计了一个联合自动编码器和初始模块以有效地提取特征。设计了一个两阶段分类和回归框架来检测具有逐步精确定位的热点,这提供了有希望的性能改进。实验结果表明,我们的框架比现有方法具有显着的速度提高,准确率更高,误报更少。
由于其优异的介电性能,玻璃可以作为表面离子阱制造中石英或蓝宝石的低成本替代材料。与高电阻率(5000 Ω·cm)硅衬底(20 MHz 时的典型损耗角正切为 1.5)相比[24],本文采用的玻璃衬底(Corning SGW 8.5)在 5 GHz 时的损耗角正切为 0.025,体积电阻率为 10 10 Ω·cm(数据可从产品信息表获得)。这省去了硅阱所需的射频屏蔽层和绝缘层,并使制造程序变得更加简单。此外,透明玻璃(波长为 300 至 2400 nm 的透射率为 90%)可以使光的传输和收集更加灵活,例如,通过在下面放置光纤和/或光电探测器。 [25]与其他介电材料(如蓝宝石和石英)相比,玻璃不仅成本低,而且可制造性更先进,可以实现高可靠性的玻璃通孔、[26,27]阳极键合、[28]
第 26 届国际高质量电子设计研讨会 (ISQED'25) 是领先的电子 IC 和系统设计会议,旨在弥合电子设计工具和流程、集成电路技术、工艺和制造之间的差距,以实现设计质量。ISQED 是处理可制造性和质量问题的先驱和领先的国际会议。ISQED 强调电子设计的整体方法,并打算强调和加速 IC 和系统设计、EDA、半导体工艺技术和制造社区之间的合作。ISQED 将以混合形式举行,为期三天,从周三到周五,在多个平行轨道上举办同行评审的技术演示、几位主题演讲者、嵌入式教程、嵌入式峰会和其他非正式会议。会议记录和论文将在 IEEE Xplore 数字图书馆中发布,并由 SCOPUS 索引。如需任何信息,请发送电子邮件至 isqedisqed@gmail.com 联系出版委员会。
摘要 光学超表面是平面纳米结构器件,具有工业吸引力,部分原因是它们利用高通量微电子制造技术来实现。因此,开发能够平衡高效波前响应实现和器件可制造性的设计范例至关重要。我们引入了一种基于梯度的自由曲面超表面设计框架,其中纳米级元素明确限制为基本形状、几乎均匀的特征尺寸和极低的纵横比。尽管超表面几何特征看似均匀,但这些器件能够利用非局部近场光耦合实现超越传统设计方法的高效和极端波前散射。利用这种方法,我们设计了简单的高数值孔径器件,例如能够实现衍射极限聚焦的光束偏转器和大面积超透镜。我们预计这些概念可以促进超表面的设计和集成到单片光学系统中。
技术并对替代电子封装技术进行了比较。第 2 章介绍了电源混合动力车中使用的各种组件:它们的工作原理和选择指南。第 3 章专门介绍了电源混合动力车构造中使用的材料,并提供了选择和使用它们的实用建议。第 4 章详细介绍了设计问题:工艺流程、系统分区、封装选择和设计指南,并提供了分步说明以确保电源混合微电路的性能、可靠性和可制造性。第 5 章中讨论的信息对于理解电源混合动力车构造中使用的材料的热特性、材料的选择指南以及工艺控制和混合动力车性能评估方法是必不可少的。第 6 章介绍了当前生产中使用的制造工艺和方法。它们包括基板制造、组装和测试。最后一章包含有关电源混合动力车和模块的高级应用的信息。
• 模块级封装技术可降低成本并提高太空级太阳能电池阵列的性能。伪晶玻璃 (PMG) 使用嵌入在硅树脂基质中的玻璃微珠,可以将其制成薄片或喷涂在互连模块上。使用太空级 DC 93-500 的纯硅树脂片也已被研究用于模块级保护。这两种方法都具有高灵活性的额外优势,为实现真正灵活的太阳能模块开辟了道路。这项工作包括一种棱镜纹理化方法,该方法将提高包括 PMG 在内的硅基封装的性能和可制造性。 • 2023 年 7 月结束 COR:Lyndsey McMillon-Brown lyndsey.mcmillon-brown@nasa.gov • 2021 年第 1 阶段:Regher (Solestial)/推动超薄硅太阳能电池的辐射硬度和鉴定
Dave 和他的联合创始人着手组建一支由来自当今最具启发性的深度科技公司(SpaceX、Tesla、First Solar 等)的世界级工程师和科学家组成的团队。他们让团队从头开始重新思考电解,并有一个指导方针——最大限度地降低可再生氢的平准化成本 (LCOH)。该团队热切地利用最新的工具、方法和横向思维,从其他行业和学科带来新颖的想法,开始着手设计。在每一个设计决策中,可制造性和可施工性都是最重要的。他们彻底改造了现有的设计,优化了系统权衡,重新设计了关键组件,并推动了电化学的发展。他们的目标是建立一个能够以与化石燃料同等的成本生产无化石燃料 H2 的电解厂。Electric Hydrogen (EH2) 内部对降低成本的执着追求成为了公司的北极星。
SARS-CoV-2 疫情已影响全球超过 1.85 亿人,导致超过 400 万人死亡。为了控制疫情,人们仍然需要安全的疫苗,这些疫苗应以低剂量和可扩展的剂量提供持久的保护,并且可以轻松部署。AAVCOVID-1 是一种腺相关病毒 (AAV) 疫苗,基于刺突基因,在小鼠和非人类灵长类动物中单次注射后就表现出强大的免疫原性,并为猕猴提供完全保护,使其免受 SARS-CoV-2 攻击。峰值中和抗体滴度在 1 年内持续存在,并由功能性记忆 T 细胞反应补充。AAVCOVID 载体在人类中没有相关的预先存在的免疫力,也不会引起与基因治疗中使用的常见 AAV 的交叉反应。载体基因组的持久性和表达在注射后会减弱。单次低剂量要求、高产量可制造性以及室温下储存 1 个月的稳定性可能使该技术非常适合支持全球范围内针对新出现病原体的有效免疫运动。
