在本文中,我们展示了一种用于卫星通信应用的低成本 7.25-7.75 GHz 两级低噪声放大器,其噪声系数低于 1 dB。采用 Rogers RT5880 基板上的微带技术(介电常数为 2.2,厚度为 0.508 mm)开发低噪声放大器。印刷电路板技术具有多种优势,例如成本低、重量轻以及制造过程后的可重新配置性,这些优势使该技术在商业和军事应用的卫星通信系统中具有吸引力。由于单片微波集成电路技术可提供更小尺寸的电路和高电气性能(尤其是在毫米波频率下),因此印刷微带技术可以成为集成电路技术的有力竞争对手,因为它具有经过验证的可靠性、更简单、更便宜和更快速的制造工艺以及 X 波段应用中可压缩的电气性能。此外,所提出的放大器是利用加州东部实验室的 Rogers-RT5880 上的 CE3512K2 晶体管开发的,并在匹配网络中使用了表面贴装器件以减小尺寸。此外,还实施了源生成和级间匹配拓扑,以简化匹配复杂性,从而增强噪声和增益。原型是利用 LPKF 原型机制造的。开发的 LNA 在工作频率带宽内表现出 23.5±0.5 dB 的测量增益,噪声系数小于 0.9 dB,输入/输出回波损耗优于 11.5 dB。此外,开发的放大器在中心频率处测量的载波干扰比为 -59 dBc,P1dB 为 13 dBm,同时消耗的总直流功率为 50 mW。
1 伊斯坦布尔技术大学航空航天学院,34469 伊斯坦布尔,土耳其 2 法国国家科研中心,里尔流体机械实验室 - 费里埃特营地 (LMFL),59655 Villeneuve d'Ascq,法国 3 佐治亚理工学院,乔治·W·伍德拉夫机械工程学院,30332,佐治亚州亚特兰大,美国 收到日期:2022 年 1 月 28 日 修订日期:2022 年 3 月 14 日 接受日期:2022 年 6 月 9 日 摘要 Özet 这项工作介绍了一种新的大涡模拟 (LES) 求解器 lestr3d,用于研究实际湍流问题。lestr3d 使用有限体积法和二阶离散化方案在非结构化网格上求解可压缩 LES 方程。可压缩的 Smagorinsky、壁面自适应局部涡 (WALE) 粘度和 k 方程模型可用作亚网格尺度模型。使用 METIS 软件和消息传递接口库可实现高效并行化。lestr3d 可在高性能计算平台上扩展至 896 个核心。对 lestr3d 的验证和验证分析是在盖子驱动的腔体流动问题上进行的。对于分别具有低分辨率和高分辨率网格的 k 方程和 WALE 的情况,结果与可用的直接数值模拟和实验数据具有很好的一致性。然后,研究了 T106 涡轮叶片上的流动,以展示 lestr3d 的功能。结果表明,lestr3d 能够对复杂的几何形状进行模拟,并可靠地捕捉流动的时空演变和统计数据。总体而言,lestr3d 被证明是研究复杂湍流问题的一项有价值的长期投资。
我们对气体稀薄对共振平面非线性声波能量动力学的影响进行了数值研究。问题设置是一个充满气体的绝热管,一端由以管的基本共振频率振动的活塞激发,另一端封闭;非线性波逐渐陡化,直到达到极限环,在足够高的密度下形成激波。克努森数(这里定义为特征分子碰撞时间尺度与共振周期之比)通过改变气体的基准密度在 Kn = 10 − 1 − 10 − 5 范围内变化,从稀薄状态到密集状态。工作流体为氩气。用 Bhatnagar-Gross-Krook (BGK) 模型封闭的玻尔兹曼方程的数值解用于模拟 Kn ≥ 0.01 的情况。对于 Kn < 0 . 01 ,使用完全可压缩的一维 Navier-Stokes 方程和自适应网格细化 (AMR) 来解析共振弱冲击波,波马赫数高达 1.01 。非线性波陡化和冲击波形成与波数-频率域中声能的频谱展宽有关;后者是根据 Gupta 和 Scalo 在 Phys. Rev. E 98, 033117 (2018) 中得出的二阶非线性声学的精确能量推论定义的,代表系统的 Lyapunov 函数。在极限环处,声能谱表现出惯性范围内斜率为 −2 的平衡能量级联,同一作者在自由衰减的非线性声波中也观察到了这种现象。在本系统中,能量在低波数/频率时通过活塞从外部引入,在高波数/频率时由热粘性耗散平衡,导致系统基准温度升高。热粘性耗散率在基于最大速度振幅的固定雷诺数下按 Kn 2 缩放,即随流动稀疏程度而增加;一致地,极限环处陡峭波的最小长度尺度(对应于冲击波(存在时)的厚度)也随 Kn 而增加。对于给定的固定活塞速度振幅,光谱能量级联的惯性范围的带宽随克努森数的增加而减小,导致系统的共振响应降低。通过利用柯尔莫哥洛夫流体动力学湍流理论中的无量纲缩放定律,结果表明,基于域内最大声速幅,可以预期声学雷诺数 Re U max > 100 的谱能量传递惯性范围。