根据 NITI Aayog (2022) 的数据,印度电动汽车电池再利用市场的增长将从 2023 年的 2 GWh 增加到 2030 年的 128 GWh。为了加快这一增长速度,应重点改进当前的检测技术和政策,以确保电池的安全和可持续的可重复使用性和可回收性。有关退役电动汽车电池测试和认证的法规应成为核心。此外,测试技术的进步将是提高这些流程效率的关键。初创企业也应该抓住这个新兴领域的机遇,利用尖端的检测技术推动电池再利用和回收市场的创新和增长。
要被认为是可回收的,包装不仅应用于可回收性,而且还可以轻松地进行大规模回收。表现不佳的材料恢复设施(MRFS)导致效率低下和重大材料损失。当前的排序技术仅处理约30%的塑料包装,而许多较小的材料恢复设施仍在手工分类。16缺乏投资和知识 - 如何提高废物管理的运营效率。回收行业需要加速其向整合和现代化的转变。16合作努力可以激励物质恢复设施并支持低收入国家发展更好的废物管理基础设施。17
廉价、高效和可持续的能源存储技术对于全球摆脱化石燃料至关重要。而这种转变反过来对气候也至关重要 1 — 因此,该领域技术进步的紧迫性显而易见。值得庆幸的是,最近的进展很快;例如,自 20 世纪 90 年代初以来,锂离子电池的能量密度增加了两倍多,价格也大幅下降,使其从便携式电子设备到固定电网存储得到了广泛的应用。 2 然而,锂离子电池无法承担所有的能源存储负担 — 尤其是考虑到它们依赖不可再生或不丰富的材料,而它们的可回收性仍是一个悬而未决的问题。正在进行的电网脱碳以满足温室气体减排目标
轻质材料因其众多优势(包括耐腐蚀性、出色的成形性和高比强度)已成为电动汽车 (EV) 制造的重点。除了提高性能外,这些材料还有助于减少对环境的影响,因为它们具有高度的可回收性。本文全面概述了轻质金属及其合金在汽车工业中的特性、制造方法和应用。它还对各种轻质材料进行了比较分析,强调了它们的相对优势和局限性。通过整合科学知识和行业见解,本综述旨在指导汽车行业和科学界推进轻质合金在电动汽车中的使用,为开发更可持续、更高效的汽车做出贡献。
先进材料 [1] 经过精心设计,具有超越传统材料的特定性能。它们具有卓越的成本和操作性能,更具可持续性和可回收性,或可替代用于类似功能的战略或关键材料。许多先进材料已成功被市场采用,目前已广泛应用于各个领域。例如超级合金、聚合物、纳米材料、碳材料、光学、电子和磁性材料、超导体、技术陶瓷、复合材料和生物材料、制冷剂、催化剂、涂层和粘合剂。先进材料的不断发展是创新的驱动力。这涉及广泛的行业和研究机构,有助于创造更高效、可持续和尖端的技术。先进材料还有望提供有效的应对措施,以应对
汽车行业正在朝向可持续和高性能材料的范式转变,这是由于需要提高燃油效率,降低碳排放和增强的车辆耐用性而驱动的。先进的材料创新,包括轻型合金,高强度复合材料和基于生物的聚合物,正在改变汽车设计和制造。由人工智能(AI)和机器学习(ML)提供支持的数据驱动材料科学的整合正在加速材料发现,性能优化和生命周期评估。本研究探讨了可持续材料在汽车制造中的作用,重点是它们对轻巧,结构完整性和可回收性的影响。关键重点是用于材料选择的AI增强预测分析,从而实现了机械性能,耐腐蚀性和热稳定性的实时优化。此外,数字双胞胎模型在各种操作条件下促进了对物质行为的深入模拟,从而确保了长期的性能和安全性。采用智能制造技术,例如增材制造和高级涂料,进一步提高了材料效率和可持续性。此外,这项研究强调了循环经济原则在材料生命周期管理中的重要性,解决了可回收性,再制造和减少废物的策略。创新材料的案例研究,包括碳纤维增强的聚合物,铝 - 含量合金和石墨烯增强复合材料,在减轻体重和耐用性方面表现出显着的进步。通过利用数据驱动的见解,AI驱动的材料信息学和生命周期优化策略,汽车行业可以实现更大的可持续性而不会损害绩效。本研究对不断发展的材料格局进行了全面分析,为未来趋势,挑战以及计算建模在下一代汽车制造中的作用提供了见解。
摘要:与聚合物复合材料中合成增强相关的环境挑战,例如非生物降解性和可回收性差,需要探索各种天然材料,尤其是从废物流中,以全面或部分替代此类增强。然而,这些天然纤维还提出了挑战,例如高吸水,低热稳定性和平均机械性能。为了避免这些问题,包含一种或多种类型的自然增强的天然纤维增强杂化复合材料正在增加研究兴趣。本文介绍了对天然纤维增强杂化复合材料的评论。综述了天然和合成纤维(杂化纤维)增强的热塑性和热热器。总结了纤维的特性以及所得的复合材料和加工技术。