通过OCT4,SOX2,KLF4和MYC(OSKM)的表达进行瞬时重编程是组织再生和恢复活力的一种治疗策略,但对其代谢需求知之甚少。在这里我们表明,小鼠的OSKM重编程会导致维生素B 12的全球耗竭和蛋氨酸饥饿的分子标志。补充维生素B 12提高了小鼠和培养细胞中重编程的效率,后者表明细胞中性作用。我们表明,表观遗传标记H3K36me3可防止启动子外转录的违法启动(隐性转录),对维生素B 12级别敏感,为B 12水平(H3K36甲基化,转录延伸性,转录延伸性和有效的重新编程)提供了链接的证据。维生素B 12补充剂还可以加速溃疡性结肠炎模型中的组织修复。我们得出的结论是,维生素B 12通过其在单碳代谢和表观遗传动力学中的关键作用提高了体内重编程和组织修复的效率。
Sorbonne Universit'E,E,Piti的儿童和青少年精神病学系,E-SALP ˆ etri etri'eere医院,法国巴黎,法国的Institut National de la Sant'E Et De la Recherche M´Edicale,Inserm u a10大学e Paris-Saclay,Ecole Normale Sup´ iRieure Paris-Saclay,CNRS,Center Borelli,Gif-Sur-Yvette; EPS BARTH的精神病学系,法国儿童和青少年精神病学和心理治疗系的Eps Barth´El´emy Durand,大学医学中心,von-Siebold-STR。5, 37075 G ¨ ottingen, Germany u Department of Psychiatry and Neuroimaging Center, Technische Universit ¨ at Dresden, Dresden, Germany v Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charit ´ e Universit ¨ atsmedizin Berlin, Germany w School of Psychology and Global Brain Health Institute, Trinity College爱尔兰X都柏林X人口神经科学与精确医学中心(PONS),脑启发智能科学与技术研究所(ISTBI)(ISTBI),Fudan University,Fudan University,上海,Y,生理学和营养科学系多伦多多伦多的位于加拿大M5S3G3
利益冲突作者宣布没有利益冲突。作者贡献SB和GD为论文开发了思想和概念。SB进行了实验,数据分析并领导论文的撰写。两位作者都为草稿做出了巨大贡献,并获得了发表的最终批准。致谢我们感谢同事,尤其是Natasha Tigreros博士的评论和讨论,改善了该项目的方向。我们感谢亚利桑那大学的毕业生和专业学生会项目资助。数据可访问性数据和软件代码可在Dryad上找到:doi:10.5061/dryad.b8gtht7j6
1。Paolicelli,R.C.,Sierra,A.,Stevens,B.,Tremblay,M.-E.,Aguzzi,A.,Ajami,B.,Amit,I.,Audinat,E.,Bechmann,I.,Bennett,M。等。 (2022)。 小胶质细胞状态和命名法:在其十字路口的领域。 Neuron 110,3458-3483。 https://doi.org/10.1016/j.neuron.2022.10.020。 2。 巴克莱(2024)。 免疫。 3。 Deczkowska,A. (2018)。 与疾病相关的小胶质细胞:神经退行性的通用免疫传感器。 单元格173,1073-1081。 https://doi.org/10.1016/j.cell.2018.05.003。 4。 lan,Y.,Zhang,X.,Liu,S.,Guo,C.,Jin,Y.,Li,H.,Wang,L.,Zhao,J.,Hao,Y.,Y.,Li,Z.等。 (2024)。 SPP1表达的命运图揭示了脑损伤后与疾病相关的小胶质细胞样细胞的年龄依赖性可塑性。 免疫57,349-363.E349。 https://doi.org/10.1016/j.immuni.2024.01.008。 5。 Rachmian,N.,Medina,S.,Cherqui,U.,Akiva,H.,Deitch,D.,Edilbi,D.,Croese,T.,Salame,T.M.,Ramos,J.M.P.,Cahalon,L。等。 (2024)。 鉴定衰老和阿尔茨海默氏病小鼠大脑中衰老,表达小胶质细胞的鉴定。 nat Neurosci。 10.1038/S41593-024-01620-8。 6。 Matsudaira,T.,Nakano,S.,Konishi,Y.,Kawamoto,S.,Uemura,K.,Kondo,T.,Sakurai,K.,Ozawa,T. (2023)。 在小鼠衰老期间诱导白质小胶质细胞的细胞衰老,并加剧神经素浮游生物表型。Paolicelli,R.C.,Sierra,A.,Stevens,B.,Tremblay,M.-E.,Aguzzi,A.,Ajami,B.,Amit,I.,Audinat,E.,Bechmann,I.,Bennett,M。等。(2022)。小胶质细胞状态和命名法:在其十字路口的领域。Neuron 110,3458-3483。 https://doi.org/10.1016/j.neuron.2022.10.020。2。巴克莱(2024)。免疫。3。Deczkowska,A. (2018)。 与疾病相关的小胶质细胞:神经退行性的通用免疫传感器。 单元格173,1073-1081。 https://doi.org/10.1016/j.cell.2018.05.003。 4。 lan,Y.,Zhang,X.,Liu,S.,Guo,C.,Jin,Y.,Li,H.,Wang,L.,Zhao,J.,Hao,Y.,Y.,Li,Z.等。 (2024)。 SPP1表达的命运图揭示了脑损伤后与疾病相关的小胶质细胞样细胞的年龄依赖性可塑性。 免疫57,349-363.E349。 https://doi.org/10.1016/j.immuni.2024.01.008。 5。 Rachmian,N.,Medina,S.,Cherqui,U.,Akiva,H.,Deitch,D.,Edilbi,D.,Croese,T.,Salame,T.M.,Ramos,J.M.P.,Cahalon,L。等。 (2024)。 鉴定衰老和阿尔茨海默氏病小鼠大脑中衰老,表达小胶质细胞的鉴定。 nat Neurosci。 10.1038/S41593-024-01620-8。 6。 Matsudaira,T.,Nakano,S.,Konishi,Y.,Kawamoto,S.,Uemura,K.,Kondo,T.,Sakurai,K.,Ozawa,T. (2023)。 在小鼠衰老期间诱导白质小胶质细胞的细胞衰老,并加剧神经素浮游生物表型。Deczkowska,A.(2018)。与疾病相关的小胶质细胞:神经退行性的通用免疫传感器。单元格173,1073-1081。 https://doi.org/10.1016/j.cell.2018.05.003。4。lan,Y.,Zhang,X.,Liu,S.,Guo,C.,Jin,Y.,Li,H.,Wang,L.,Zhao,J.,Hao,Y.,Y.,Li,Z.等。(2024)。SPP1表达的命运图揭示了脑损伤后与疾病相关的小胶质细胞样细胞的年龄依赖性可塑性。免疫57,349-363.E349。https://doi.org/10.1016/j.immuni.2024.01.008。5。Rachmian,N.,Medina,S.,Cherqui,U.,Akiva,H.,Deitch,D.,Edilbi,D.,Croese,T.,Salame,T.M.,Ramos,J.M.P.,Cahalon,L。等。 (2024)。 鉴定衰老和阿尔茨海默氏病小鼠大脑中衰老,表达小胶质细胞的鉴定。 nat Neurosci。 10.1038/S41593-024-01620-8。 6。 Matsudaira,T.,Nakano,S.,Konishi,Y.,Kawamoto,S.,Uemura,K.,Kondo,T.,Sakurai,K.,Ozawa,T. (2023)。 在小鼠衰老期间诱导白质小胶质细胞的细胞衰老,并加剧神经素浮游生物表型。Rachmian,N.,Medina,S.,Cherqui,U.,Akiva,H.,Deitch,D.,Edilbi,D.,Croese,T.,Salame,T.M.,Ramos,J.M.P.,Cahalon,L。等。(2024)。鉴定衰老和阿尔茨海默氏病小鼠大脑中衰老,表达小胶质细胞的鉴定。nat Neurosci。10.1038/S41593-024-01620-8。6。Matsudaira,T.,Nakano,S.,Konishi,Y.,Kawamoto,S.,Uemura,K.,Kondo,T.,Sakurai,K.,Ozawa,T.(2023)。在小鼠衰老期间诱导白质小胶质细胞的细胞衰老,并加剧神经素浮游生物表型。支持6,665。10.1038/S4203-023-05027-27。of Scheper,S.,GE,J.Z.,G.,Ferreira,L.S.,Garceau,D.,Toomey,C.E.,Socolova,D.,Rueda-Carrasco,J.,Shin,Shin,Shin,Shin,S.-H.(2023)。特定于Andsnaptics的特定补充和切片,并在阿尔茨海默氏症小鼠模型中访问SPP1。新自然26,406-410.1038/S41593-023-01257-Z。8。Silvin,A.,Uderhardt,St.,St.,C。,来自Mesquita,St.,Yang,K.,Girls,L.,Mulder,K.,Eyal,D.,Liu,Z.,Bridlance,C。和Al。(2022)。Michroglia和神经退行性的分裂。免疫55,1448-1465。pm。https://doi.org/10.1016/j.immuni.2022.07.0 9。 van Hove,H.,Martens,L.,I.,Vlaminck,K.,Pombo Antunes,A.R.,Prijck,S.,N. (2019)。 大脑巨噬细胞的单细胞图集只有超越身份才能活着。 nat Neurosci 22,1021-1 10.1038/s41593-019-0393-4。 10。 测试,A。,Weiner,A。和Friends,I。 (2020)。 路径信号通路。 这个181,1207-1 https://doi.org/1016/j.cell.2020.05.0https://doi.org/10.1016/j.immuni.2022.07.09。van Hove,H.,Martens,L.,I.,Vlaminck,K.,Pombo Antunes,A.R.,Prijck,S.,N.(2019)。大脑巨噬细胞的单细胞图集只有超越身份才能活着。nat Neurosci 22,1021-110.1038/s41593-019-0393-4。10。测试,A。,Weiner,A。和Friends,I。(2020)。路径信号通路。这个181,1207-1 https://doi.org/1016/j.cell.2020.05.0
1 equipelabelliséeligue conte癌症“ EMT和癌细胞可塑性”,CNRS 5286,INSERM 1052,中心bérardonBérard,Lard,Lyon癌症研究中心,Claude Bernard Lyon Univers of Claude Bernard Lyon 1,69008 Lyon。 Anne-pierre.morel@lyon.unicancer.fr(A.-P.M.); maria.ouzounova@lyon.unicancer.fr(M.O.)2 LabEx DEVweCAN, Universit é de Lyon, 69008 Lyon, France 3 Institut Curie “EMT and Cancer Cell Plasticity”, Consortium Centre L é on B é rard, 69008 Lyon, France 4 UMR3664—Nuclear Dynamics, Development, Biology, Cancer, Genetics and Epigenetics, Institut Curie, PSL Research University, 75005 Paris, 法国; aruni.senaratne@curie.fr 5 CNRS UMR3666,INSERM U1143,蜂窝和化学生物学,Curie Institut Curie,PSL Research Instrys,75005 Paris,法国巴黎 *通信 *通讯:Hadrien.deblander.deblander.deblander@kuleuven.be(H.D.B.B.); alain.puisieux@curie.fr(A.P。)
淀粉样蛋白-β阳性在认知无击中的Kloho kl-vs杂合子中的普遍性较小Gwednlyn Bolmorgen K,Clara Quijano-Rubio L阿尔茨海默氏病研究中心和医学,威斯康星大学 - 马达,美国威斯康星州马登,美国威斯康星州b。威斯康星大学医学与公共卫生学院人口健康科学系,美国威斯康星州麦迪逊市c。威斯康星州麦迪逊市威斯康星州威斯康星州的威斯康星州研究所。美国威斯康星州麦迪逊市威廉·S·米德尔顿医院的老年研究教育与临床中心e。瑞典哥德堡大学Sahlgrenska学院神经科学与生理学研究所精神病学和神经化学系。瑞典MölndalSahlgrenska大学医院临床神经化学实验室。 UCL神经病学研究所神经退行性疾病系,英国伦敦皇后广场h。英国伦敦UCL的英国痴呆研究所I。香港神经退行性疾病中心,中国香港清水湾J.威斯康星大学医学与公共卫生学院,威斯康星州麦迪逊分校,威斯康星大学医学与公共卫生学院,威斯康星州麦迪逊分校,美国威斯康星州麦迪逊,美国威斯康星州,美国威斯康星州。 Roche Diagnostics GmbH,德国Penzberg,L。 Roche Diagnostics International Ltd,Rotkreuz,瑞士M。美国加利福尼亚州旧金山大学神经科学和威尔神经科学研究所,美国加利福尼亚州旧金山,跑步标题:地位不同。或Ira Driscoll,博士医学系和威斯康星州阿尔茨海默氏病研究中心威斯康星州麦迪逊大学600 Highland Avenue Madison,美国威斯康星州53792,美国威斯康星大学医学与公共卫生学院人口健康科学系,美国威斯康星州麦迪逊市c。威斯康星州麦迪逊市威斯康星州威斯康星州的威斯康星州研究所。美国威斯康星州麦迪逊市威廉·S·米德尔顿医院的老年研究教育与临床中心e。瑞典哥德堡大学Sahlgrenska学院神经科学与生理学研究所精神病学和神经化学系。瑞典MölndalSahlgrenska大学医院临床神经化学实验室。 UCL神经病学研究所神经退行性疾病系,英国伦敦皇后广场h。英国伦敦UCL的英国痴呆研究所I。香港神经退行性疾病中心,中国香港清水湾J.威斯康星大学医学与公共卫生学院,威斯康星州麦迪逊分校,威斯康星大学医学与公共卫生学院,威斯康星州麦迪逊分校,美国威斯康星州麦迪逊,美国威斯康星州,美国威斯康星州。 Roche Diagnostics GmbH,德国Penzberg,L。 Roche Diagnostics International Ltd,Rotkreuz,瑞士M。美国加利福尼亚州旧金山大学神经科学和威尔神经科学研究所,美国加利福尼亚州旧金山,跑步标题:地位不同。或Ira Driscoll,博士医学系和威斯康星州阿尔茨海默氏病研究中心威斯康星州麦迪逊大学600 Highland Avenue Madison,美国威斯康星州53792,美国
朱利安·兰伯特(Julien Lambert),卡拉·莱特 - 费尔南德斯(Carla Lloret-Fernández),露西·拉普兰(Lucie Laplane),理查德·普尔(Richard Poole),索菲·贾里亚特(Sophie Jarriault)。关于秀丽隐杆线虫中单细胞模型的天然可塑性的起源和概念框架的起源和概念框架。线虫发展与疾病模型,144,Elsevier,第111-159、2021页,当前发育生物学的主题,978-0-0-12-816177-7。10.1016/bs.ctdb.2021.03.004。hal-03450893
摘要:神经调节的领域缺乏影响可塑性个体差异的预测指标,这些差异会影响对重复的经颅磁刺激(RTMS)的反应。连续的theta爆发刺激(CTB)是一种以其抑制作用而闻名的RTM的形式,显示了个体之间的可变反应,这可能是由于神经可塑性的差异所致。预测单个CTBS效应可以极大地增强其临床和实验效用。本研究探讨了在神经调节之前测量的电动机诱发电位(MEP)输入输出(IO)参数是否可以预测运动皮层对CTB的反应。IO曲线是通过记录在一系列单脉冲TMS强度上的MEP来从健康成年人中取样的,以获得包括MEP Max和S 50(中点强度)在内的参数。后来比较了刺激前后的Moto Cortex及其MEP的相同位置的CTB。MEP Max和S 50都预测了响应,与CTB后10、20和30分钟的个人MEP变化显着相关(P <0.05,R 2> 0.25)。此外,我们介绍并验证了一种易于实现的生物标志物,该标志物不需要全IO曲线的耗时抽样:MEP 130RMT(中位数为10 MEP,在130%RMT)。MEP 130RMT也是CTBS响应的强有力预测指标(P <0.005,r 2> 0.3)。与先前研究的RTMS响应(BDNF多态性)的遗传生物标志物的头对头比较表明,基于IO的预测因子在解释更多响应变异性方面具有出色的性能。关键字:输入输出曲线,CTB,预测变量因此,在CTBS给药之前得出的IO曲线可以可靠地预测CTB诱导的皮质兴奋性变化。这项工作指向RTMS诊断和治疗应用中调整刺激程序的无障碍策略,并可能提高对其他大脑刺激方法的反应率。
摘要:脑机接口 (BCI) 已被证明可用于中风康复,但有许多因素阻碍了该技术在康复诊所和家庭中的使用,主要因素包括 BCI 系统的可用性和成本。本研究的目的是开发一种廉价的 3D 打印腕外骨骼,可由廉价的开源 BCI (OpenViBE) 控制,并确定使用这种设置进行训练是否可以诱导神经可塑性。11 名健康志愿者想象手腕伸展,这些伸展通过单次脑电图 (EEG) 检测到,作为响应,腕外骨骼复制了预期的运动。在使用外骨骼进行 BCI 训练之前、之后立即和 30 分钟后测量使用经颅磁刺激引起的运动诱发电位 (MEP)。BCI 系统的真阳性率为 86 ± 12%,每分钟有 1.20 ± 0.57 次误检。与 BCI 训练前的测量结果相比,MEP 在训练后立即增加了 35 ± 60%,在 BCI 训练 30 分钟后增加了 67 ± 60%。BCI 性能与可塑性诱导之间没有关联。总之,可以使用开源 BCI 设置检测想象运动并控制廉价的 3D 打印外骨骼,当与 BCI 结合时可以诱导神经可塑性。这些发现可能会促进 BCI 技术在康复诊所和家庭中的普及。然而,可用性必须提高,并且需要对中风患者进行进一步测试。
肥胖症和2型糖尿病的高度高,特别是在儿童中,强调了更好地了解这些病理状况发展中涉及的机制。先前的研究表明,孕产妇营养环境的改变破坏了下丘脑回路的发展,后代的代谢后果持续。最近的证据还将母体肠道微生物组与后代的大脑发育和行为联系起来。然而,母体肠道微生物组(米高梅)是否影响后代下丘脑回路的发展,对下丘脑功能的短期和长期后果仍然未知。在这里,我们研究了米高梅对后代生理和神经发育结果的损害的后果。为了实现这一目标,我们通过在大坝中施用大频谱抗生素(ABX)的鸡尾酒,在妊娠和泌乳过程中开发了母体营养不良的小鼠模型。目的是针对下丘脑发育的临界阶段,其中包括胚胎神经发生,产后回路形成和下丘脑屏障的成熟。我们首先确认在妊娠,泌乳和断奶期间与对照组相比,在ABX处理的大坝中显着降低了肠道细菌。妊娠期间的母体体重,垃圾大小或垃圾性别比例不受治疗的影响。进行了一系列代谢测试,以检查母体营养不良对后代代谢调节的结果。MGM改变会减慢预断奶后代体重增加。然而,抗生素处理的大坝(OFF_ABX)的后代显示断奶和成年之间的追赶生长,这主要是由于纵向生长的增加。成年后,男性OFF_ABX会发展代谢改变。成年女性OFF_ABX表现出延迟的青春期发作,但没有代谢障碍。此外,初步结果表明,OFF_ABX表现出中位数中的血管丘脑屏障的神经解剖学变化,该变化位于大脑和外围之间的十字路口,在调节代谢中起着至关重要的作用。一起,这些结果支持了以下假设:MGM有助于神经内分泌下丘脑的发展,并且在后代中对与血液中 - 异位疗法障碍