细胞死亡在维持组织稳态中起着关键作用。控制诱导细胞死亡的关键因素是死亡受体 (DR)。CD95 是一种原型 DR,由其同源配体 CD95L 激活,可触发程序性细胞死亡。因此,CD95/CD95L 通路的改变与多种疾病有关,从自身免疫性疾病到炎症和癌症。CD95L 诱导的细胞死亡在免疫反应中具有多种作用,因为它构成了细胞毒性淋巴细胞杀死其目标的机制之一,但它也参与关闭免疫反应的过程。此外,除了典型的促死亡信号外,CD95L 可以是膜结合的,也可以是可溶的,它还会诱导非凋亡信号,这有助于其促进肿瘤和促炎症的作用。本综述的目的是描述 CD95/CD95L 在癌症、自身免疫性疾病和慢性炎症的病理生理学中的作用,并讨论利用/阻断这些疾病中的 CD95/CD95L 系统的最近获得专利和新兴的治疗策略。
摘要:提出了贩运伴侣PDE6D(或PDEδ)作为K-RAS的替代靶标,导致一系列阻断其前蛋白酶结合口袋的抑制剂的发展。这些抑制剂的溶解度低和可疑的脱靶效应,从而阻止了它们的临床发育。在这里,我们开发了一种高度可溶的纳摩尔PDE6D抑制剂(PDE6DI),Deltaflexin3,其具有最低的脱靶活性,与三种突出的参考化合物相比。deltaflexin3降低了RAS信号传导,并有选择地降低了KRAS突变体和PDE6D依赖性癌细胞的生长。我们进一步表明,pKG2介导的Ser181的磷酸化降低了与PDE6D结合的K-RAS。因此,Deltaflexin3与认可的PKG2激活剂西地那非结合使用,以更有效地抑制PDE6D/K-RAS结合,癌细胞增殖和微肿瘤生长。如前所述,RAS运输,信号传导和癌细胞增殖的抑制作用仍然适中。我们的结果表明将PDE6D重新评估为癌症中的K-Ras替代靶标。■简介
线粒体融合和裂变伴随着压力和代谢需求改变的适应性反应。内膜融合和CRISTAE形态发生取决于视觉萎缩1(OPA1),它以不同的同工型表达,并从膜结合的裂解,长到可溶的短形式。在这里,我们通过生成仅表达一种可裂解的OPA1同工型或不可裂解的变体来分析OPA1同工型和OPA1处理的物理学作用。我们的结果表明,单个可裂解或不可裂解的OPA1同工型的表达可保留胚胎发育和成年小鼠的健康。OPA1处理在代谢和热应力下是可分配的,但可以延长寿命,并预防缺乏OXPHOS缺陷COX10 - / - 小鼠中的线粒体心脏肌病。从机械上讲,OPA1处理的损失会破坏线粒体生物发生和线粒体之间的平衡,从而抑制了Cox10 - / - 心脏中心脏肥大的生长。我们的结果突出了OPA1加工,线粒体动力学和心脏肥大的代谢的关键调节作用。
腐蚀会带来严重的安全问题,环境问题和经济损失。使用腐蚀抑制剂是控制金属腐蚀的重要技术。与小分子腐蚀抑制剂相比,聚合物腐蚀抑制剂具有更好的膜形成能力,多功能性,粘度,高温抗性,溶解性柔韧性和更多的附着位点,使其成为腐蚀抑制剂未来发展的热点之一。在这里,我们回顾了天然聚合物,聚合物表面活性剂,聚合物离子液体,基于β-果仁糖基蛋白的聚合物和聚合物纳米复合材料作为腐蚀抑制剂的研究进度。这些类型的聚合物腐蚀抑制剂不需要高分子量来实现其所需功能,并表现出出色的腐蚀抑制性能。但是,从当前的应用情况下,聚合物腐蚀抑制剂仍然存在一些缺点。例如,尽管天然聚合物修饰的聚合物不会污染环境,但它们的提取和分离操作很麻烦,并且很难准确地分析聚合物腐蚀抑制剂的活性成分。化学合成的聚合物腐蚀抑制剂仍然对环境构成威胁,不利于生态保护。在这里,我们回顾了聚合物腐蚀抑制剂的科学研究,并讨论了使它们实用的工业腐蚀抑制剂的解决方案。我们旨在提出广泛的应用前景和开发潜力,这是工业中聚合物腐蚀抑制剂的。主要点是:1)是否可以将具有良好腐蚀性性能的物质移植到聚合物上已成为准备高效可溶的聚合物腐蚀抑制剂的关键点; 2)从材料来源,溶解度,剂量和组成的角度研究和优化聚合物合成过程或自然聚合物的提取方法; 3)开发廉价,高效和环保的聚合物腐蚀抑制剂,以促进其实际的工业应用。
大量患有某些神经退行性疾病的患者被称为tauopathies,可能在其大脑中表现出病理tau蛋白聚集体。这类疾病包括阿尔茨海默氏病(AD)。在AD中,诸如PHOS磷酸化,糖基化,截断以及随后分解为低聚物,配对的螺旋细丝(PHFS)和神经纤维纤维缠结(NFTS)之类的翻译修饰与认知能力下降和神经脱落相关。结果,tau低聚物已经成为AD和TAUO病原体中的主要有毒物种。tau低聚物是可溶的,自组装的tau蛋白,在原纤维之前形成,已被证明在神经元细胞死亡中起关键作用,并在动物模型中诱导神经变性。在这篇简洁的综述中,我们整理并总结了与Tau低聚物形成有关的文献及其在阿尔茨海默氏病中的作用。其次,我们探讨了锌离子(Zn²⁺)在tau聚集中的关键作用,因为研究表明锌会诱导可逆的tau寡聚化并可能导致tau高磷酸化。锌的浓度至关重要,因为过高的水平可以促进有害的tau聚集,而正常水平对于生理功能至关重要。我们还检查了可以调节tau聚集的天然和化学化合物,最后,我们讨论了tau蛋白如何在神经元中进行液态液相分离(LLP),从而形成液滴,后来可以发展为有毒的低聚物,这是AD的主要标志。我们提到了一些影响tau llps和聚集的分子,例如蛋白质,核酸和金属离子。
本研究评估了在混合日粮中加入经处理过的小麦麸皮和有效微生物 (EMWB) 对干物质 (DM) 和粗蛋白 (CP) 的化学成分、体外消化率和囊内降解率的影响。处理组包括 70% 的天然牧草干草 (NPH) 和 30% 的浓缩混合物(小麦麸皮 (35%)、玉米 (20%)、米糠 (21%)、糖蜜 (3%)、黑麦籽饼 (4%)、葵花籽饼 (11%)、盐 (3%) 和石灰石 (3%))。该浓缩混合物分别用不同水平(0、33、66 和 100%)的经处理过的小麦麸皮替代 T 1 、T 2 、T 3 和 T 4 。 CP 含量增加(7.2、9.1、9.2 和 12.2% DM(SEM = 0.214),而中性洗涤纤维(NDF)含量随着 EMWB 水平的增加而降低(分别为 T 1 、T 2 、T 3 和 T 4 的 66.2、64.3、63.7 和 62.1 % DM(SEM = 0.117))。同样,随着饮食中 EMWB 的增加,酸性洗涤纤维(ADF)和酸性洗涤木质素(ADL)的含量均呈下降趋势。体外 DM 消化率(IVDMD)的顺序为 T 4 > T 3 > T 2 > T 1(分别为 54.9、56.2、59.7 和 74.4%(SEM = 0.169)。在饮食中加入 EMWB 能够改善快速降解的(a)和不溶但可能可溶的(b)饮食部分。此外,随着饮食中 EMWB 水平的增加,DM 和 CP 的囊内潜力 (PD) 和有效降解率 (ED) 增加。DM 的 PD 和 ED 分别在 55% 至 70% 和 37% 至 48% 之间。同样,CP 的 PD 和 ED 分别在 25% 至 48% 和 16% 至 22% 之间。使用 EMWB(例如 T 4)的处理对提高营养价值和降解率的影响最为显著。因此,EMWB 可以完全替代当前研究中使用的商业浓缩混合物,从而获得更好的结果。
1. 已经证明能够制造 Mg-Si zintl 化合物模型电极,并使用 XPS、STEM-EDS 和 FTIR/Raman 将 SEI 化学与硅进行比较。Q1 完成 2. 已经建立了实验和协议来了解影响硅阳极安全性的因素,特别关注硅电极上发生的高放热反应。Q1 完成 3. 已经确定了 CO2 对模型电极上 SEI 形成稳定性的影响,但检查了 SEI 性质的变化(XPS、FTIR/Raman 和定量电化学测量)作为 CO2 浓度的函数。Q2 完成 4. 已经使用 XPS、AFM/SSRM、STEM-EDS 和 FTIR/Raman 确定了 zintl 相形成机理及其对包括 Si NPs、Si 晶片、a-Si 薄膜在内的模型系统 SEI 的影响。 Q2 完成 5. 锡硅合金生产是否通过取决于该合金能否以 1g 的量制备,以及该合金的循环寿命是否比纯金属更长。 Q2 完成 6. 已经确定了 LiPAA/Si 界面的化学和界面特性(例如 Si 表面和有机材料处的化学键合性质),以及电荷(OCV,0.8V、0.4V、0.15V、0.05V)和干燥温度(100、125、150、175、200C)的关系。 Q3 7. 已经确定了粘合剂如何通过利用二维或三维模型系统改变 Si NP 尺寸和表面来改变硅电极上的应力/应变,以及电荷状态的关系。 Q3 8. 已经实施了能够比较硅阳极安全响应的协议,作为提高硅电池安全性的指标。 Q3 9. 已经发表了一篇论文,使其他研发小组能够分析硅基阳极上 SEI 的稳定性,从而使开发人员或研究人员能够不断提高硅电池的稳定性(与 Silicon Deep Dive 的共同里程碑)。Q4 10. 已经了解了形成的/可溶的 SEI 物质的性质和数量如何随电解质、粘合剂和 Si 阳极(表面
尿素特性是一种颗粒状的,白色的,高可溶的肥料,在所有氮肥中含有最高的氮。它通过土壤或叶面施用提供了植物的氮需求。其化学公式为CO(NH 2)2,包含46%N(氮)。由于它以NH 2的形式含有碳(C)和氮,因此被称为有机氮来源。尽管它高度溶于水,但其氮(NH 2)含量不能直接被植物根部吸收。为了使其氮含量可用于植物,在土壤中的尿素酶(在许多线圈微生物中发现)应通过酶促反应将尿素转化为尿素(NH 4)氮形成。这就是原因;土壤温度和微生物在土壤中的活性很重要。因此,尿素肥料被认为是缓慢释放的肥料。农业用途,为了提供足够的氮,尿素对几乎所有农作物和烟草的施肥非常有用。当未向植物提供足够的氮时,植物的生长会减速;叶变黄,产量降低。尿素具有独特的特性,可以在所有植物发育阶段中使用。除了在播种过程中或在播种之前或在播种之前或在播种之前的起动器(碱)肥料外,还可以将尿素作为顶级敷料施肥。在两种情况下,土壤太沙质和光线,由于降雨过多或灌溉不当,尿素肥料的大部分地区都会在土壤中排出。因此,当首选尿素作为氮源时,必须仔细灌溉此类土壤。,在小麦和大麦等植物中将尿素肥料作为顶层肥料播放为高温较高的植物中,尤其是在pH值较高的钙质土壤中,它可能会导致30-40%的氮损失。将尿素肥料施加到土壤中,然后将其与之混合时,氮流失较少。具有两个(20.20.0)和三个(15.15.15)营养素的复合肥料通常,但并非总是以尿素形式含有氮。然而,叶面肥料中的氮是尿素形式的首选,因为叶子被叶子吸收和对植物的影响要快得多。有关更多信息,请参阅我们网站上的“受精建议”。
抽象背景ATOR-1017(evunzekibart)是一种靶向共刺激受体4-1BB的人类激动剂免疫球蛋白G4抗体(CD137)。ATOR-1017在肿瘤环境中激活T细胞和天然杀伤细胞,从而导致免疫介导的肿瘤细胞死亡。在这是一个人类,多中心,I期研究的方法中,ATOR-1017每21天静脉内服用ATOR-1017作为单一疗法,以对患有多种护理标准治疗的晚期,无法切除的实体瘤患者进行单一疗法。该研究使用单个患者队列进行快速剂量升级高达40 mg;此后,经过改进的3+3设计最大900毫克。升级剂量,直到疾病进展,不可接受的毒性或戒断同意。研究的主要目标包括通过评估不良事件和限制剂量毒性(DLTS)来确定最大耐受剂量(MTD)。次要目标包括确定药代动力学,免疫原性和使用CT扫描评估的临床疗效,使用实体瘤中的免疫反应评估标准进行了评估。探索性目标包括对免疫系统生物标志物的药效学(PD)评估。筛查的27例患者的结果,25例接受了ATOR-1017的治疗。研究的中位时间为13.1周(范围4.3-92.3)。未达到ATOR-1017的MTD。在25名患者中有13例(52%)报告了与治疗相关的不良事件(TRAES);最常见的(≥10%)是疲劳(n = 4(16.0%))和中性粒细胞减少症(n = 3(12.0%)患者)。没有因Traes而停止的患者,也没有观察到DLT。五名患者经历了严重的(3级)TRAE;中性粒细胞减少症(n = 2),热中性粒细胞减少症(n = 1),胸痛(n = 1),肝酶增加(n = 1),白细胞减少症和血小板减少症(n = 1)。药代动力学数据显示出近似的剂量 - 偏移动力学。PD生物标志物(包括可溶的4-1BB)的剂量依赖性增加表示靶向介导的生物学活性。最佳反应是25例患者中有13例(52%)的稳定疾病,在6例患者中维持6个月或更长时间(24%)。ATOR-1017的结论治疗在所有剂量水平上都是安全且耐受性的,并且表现出生物学活性。此外,在经过大量预处理的人群中,几乎三分之一的患者经历了持久的稳定疾病。令人鼓舞的安全性和初步疗效数据保证
发现蛋白激酶在癌症形成和进展中发挥关键作用的发现引发了人们的极大兴趣,并激发了人们对开发有针对性治疗的信号通路的强烈研究,并鉴定了预后和预测性生物标志物。尽管大多数努力都集中在酪氨酸激酶抑制剂(TKIS)和酪氨酸激酶受体(RTK)的靶向抗体,但也针对丝氨酸/苏氨酸激酶和蛋白质磷酸酶。不幸的是,抑制剂通常缺乏特定的牙齿,并影响各种激酶。此外,经过治疗的肿瘤获得耐药性和复发性,需要二线治疗。随着精确医学的出现,很明显,网络比单个蛋白质和基因更强大。药物开发正在转向动态信号网络靶向。在后基因组时代,翻译后的修饰,例如蛋白质磷酸化及其如何影响活动或网络结构的理解仍然很差。本期专门针对癌症中蛋白质磷酸化途径的揭示的特刊,其中包括来自全球七个以上国家的80多名科学家的七篇评论文章和六篇原始研究论文。两个审查手稿提供了丝氨酸/苏氨酸蛋白激酶PKD和PKCθ的概述。Zhang等。 [1]讨论在二酰基甘油第二信号信号网络中运行的蛋白激酶D 1、2和3(PKD)家族成员,影响了不同生物系统和疾病模型中多种基本细胞功能。 Nicolle等。Zhang等。[1]讨论在二酰基甘油第二信号信号网络中运行的蛋白激酶D 1、2和3(PKD)家族成员,影响了不同生物系统和疾病模型中多种基本细胞功能。Nicolle等。在许多人类疾病中发现了PKD同工型表达和活性的失调。本综述着重于与癌症相关的生物学过程(细胞增殖,生存,凋亡,粘附,EMT,迁移和入侵),对此,理解对于开发更安全,更有效的PKD靶向疗法至关重要。蛋白激酶C theta(PKCθ)属于一种新型的PKC亚家族,在免疫系统和各种疾病的病理中起作用。[2]将其审查集中在其在癌症中的新兴功能上。其表达增加会导致细胞增殖,迁移和侵袭,从而导致癌症的启动和恶性进展。在自身免疫性疾病的背景下,PKCθ抑制剂的最新发展可能会使PKCθ与PKCθ有关的癌症的出现有益。pKC被质膜中的脂质激活,并与聚集在表皮生长因子受体(EGFR)上的支架结合。Heckman等人在论文中使用不同的表位识别抗体。[3]证明了PKCε是在两个构象中发现的,其中活性形式定位在内体中,将囊泡运送到内吞回收室中,而灭活则抵消了此功能。另一种形式是可溶的,存在于富含肌动蛋白的结构上,并与囊泡松散结合。因此,活化的PKC持续使用EGFR,更有可能进入内吞回收室。pumilus(Binase)的细菌RNase对具有某些癌基因的肿瘤细胞具有细胞毒性作用。核糖核酸(RNase)的动物,真菌和细菌起源已被证明是开发新型抗癌药物的有前途的工具。在实验贡献中,Ulyanova等人。[4]旨在识别结构