如果一组正交乘积态在每个二分图中都是局部不可约的,则它具有强非局部性,这表明在没有纠缠的情况下具有强量子非局域性现象 [ Phys.Rev.Lett.122 , 040403 (2019) ]。尽管这种现象已经在任何三、四和五部分系统中得到证实,但在多部分系统中是否存在强非局部正交乘积集仍然未知。在本文中,通过使用 N 维超立方体的一般分解,我们给出了 N 部分系统中所有奇数 N ≥ 3 的强非局部正交乘积集。基于此分解,我们给出了奇数 N ≥ 3 的 N -partite 系统中不可扩展乘积基的显式构造。此外,我们将结果应用于量子秘密共享、不可完备乘积基和 PPT 纠缠态。
其中 η ( q ) = Q ∞ k =1 (1 − qk ) 是 Dedekind eta 函数,它计数所有能级 m 上的分区 p ( m )。在许多相关的物理应用中,可能会发生 N 级上的特定后代 ξ 同时是原发性的。这被称为零向量,它提供自己的 Verma 模块 V ξ ,该模块与由 | hi ⟩ 生成的所有其他状态正交。因此,它与 Vi 解耦并可以被商掉。在适当地从 Vi 中商掉所有零向量后,可得到不可约的 Virasoro 模块 H i 。显然,此过程减小了向量空间的大小,因此 ( 1 ) 中的 d(m) ≤ p(m)。这反映在不可约模块 H i 的特征中。例如,考虑 N 级上单个零向量 ξ 的情况,它已被商掉。注意,零场 ξ 具有共形权重 h ξ = hi + N 。原始 Verma 模块 V i 摆脱了 Verma 模块 V ξ ,