人工智能算法在 GNSS 中执行的可能性 Darshna Jagiwala(1)、Shweta N. Shah(2) (1) 女科学家,DST (2) 助理教授,SVNIT,印度 摘要 大量研究验证了在全球导航卫星系统 (GNSS) 领域使用人工智能 (AI) 算法的机会。实现智能有两种方式:一种是通过机器学习 (ML),另一种是通过深度学习 (DL)。最常见的是,支持向量机 (SVM) 和卷积神经网络 (CNN) 是人工智能的重要算法,在文献中用于提高 GNSS 系统的定位精度。本文通过考虑 GNSS 接收器在射频 (RF) 前端级别、预相关级别、后相关级别和导航级别的不同阶段来进行文献综述,这将更好地理解 AI 在该领域的实施。主要研究工作是在后相关阶段进行的,其中使用了不同的数据格式,如相关输出、国家海洋电子协会 (NMEA) 数据和接收器独立交换格式 (RINEX) 数据。除此之外,本文还讨论了与 AI 算法应用相关的威胁和风险因素。1.简介 GNSS 使用精确的定时信息、定位和同步技术提供全球和实时服务。目前,美国的全球定位系统(GPS)、俄罗斯的全球导航卫星系统(GLONASS)、欧洲的伽利略(GALILEO)和中国的北斗卫星导航系统(BDS)是全面运行的GNSS系统。此外,印度的印度星座导航(NavIC)和日本的准天顶卫星系统(QZSS)都是独立自主的区域导航系统。近年来,GNSS应用越来越精确,其精确度为广泛的应用打开了大门。[1]。卫星导航系统是根据发现的物理定律设计的[2]。• GNSS系统背后的基本思想是卫星在太空中传输信号。在这里,卫星在轨道上的位置遵循开普勒行星运动定律。• 这些信号由地球表面或附近的接收器接收。扩频技术用于获取从地球轨道发射的非常微弱的卫星信号。
它们对于应对与气候危害相关的风险以及与气候脆弱性和暴露相关的风险特别有用。事实上,人工智能可以使灾害预警系统和长期气候灾害建模更加高效。这些改进可以降低气候变化影响导致不安全和冲突的风险。这些工具还可用于优化粮食生产和自然资源管理(例如精准农业),这些国家的生活条件因气候变化而恶化;或者可以促进在气候灾害期间使用自动机器人运送人道主义援助。目前已经有正在进行的项目展示了这些可能性。
在本文中,我们将论证美国国税局在响应政策制定者的需求方面发挥着重要作用。税收系统是唯一可用的数据系统,它通过详细的财务(完整的收入和资产报表)数据定期捕捉企业群体的创新和竞争活动成果,无论企业是否为雇主,无论是否为公有。只有税收系统才能捕捉旨在刺激创新和竞争力的税收政策的效果信息。这些信息可用于通过审计和其他报税后事件(如修正申报和结转)计算公司或税务报告层面的有效税率。此外,只有税务系统才能通过存在分层所有权交叉表、有关直通实体的信息以及个人与组织之间的关系来捕捉组织相互关系的复杂性。在所有情况下,考虑到对不回应公司的执法处罚,税务数据很可能比调查数据更准确,而且不回应的可能性更小。
本综述旨在评估与糖尿病相关的阴道和外阴念珠菌病例的功效和药物治疗方案。我们进行了详尽的文献综述,研究了相关的临床试验,荟萃分析和临床经验。念珠菌病和糖尿病患者被包括在临床案例研究中,以评估其对治疗的反应。抗真菌剂(例如氟康唑和氯咪唑)在治疗念珠菌病方面有效,但成功受到葡萄糖控制水平的影响。 适当的糖尿病管理以及抗真菌疗法导致复发减少。 在糖尿病环境中对念珠菌病的治疗需要综合方法,包括抗真菌治疗和对糖尿病的适当治疗。 严格的血糖控制在防止复发和改善受影响患者的生活质量方面起着至关重要的作用。 需要进一步的研究,以更好地了解糖尿病与念珠菌病之间的复杂相互作用,为制定更个性化和有效的治疗策略铺平了道路。抗真菌剂(例如氟康唑和氯咪唑)在治疗念珠菌病方面有效,但成功受到葡萄糖控制水平的影响。适当的糖尿病管理以及抗真菌疗法导致复发减少。在糖尿病环境中对念珠菌病的治疗需要综合方法,包括抗真菌治疗和对糖尿病的适当治疗。严格的血糖控制在防止复发和改善受影响患者的生活质量方面起着至关重要的作用。需要进一步的研究,以更好地了解糖尿病与念珠菌病之间的复杂相互作用,为制定更个性化和有效的治疗策略铺平了道路。
许多不同类型的脑部扫描 - 包括脑电图(“ EEG”)和功能性磁共振成像(“ fMRI”) - 用于不同的目的。脑电图通过放置在头皮上的电极来测量大脑的电活动,并且最常用于测试被告的记忆识别。1脑电图用于评估个人陈述的真实性,例如被告的不在场证明他们从未去过犯罪现场。2为了记录大脑功能,fMRIS遵循流向大脑特定区域的血液,并将这些“热点”叠加到大脑本身的三维计算机图像上。3这两种扫描均已使用,而被告经历了一系列问题或其他刺激。4电活动或“热点”记录为对特定问题的反应。
处理这些废旧电池单元。另一方面,这些退役电池库存也被视为可用于提供价值的潜在资源。这一愿景的核心是需要建立资金和技术流程,通过这些流程可以翻新、再利用和回收这些资源。已经引入的处理废旧电池的做法包括一个复杂的过程,即通过提取回收电池中的有价值材料,围绕这一过程正在形成一个行业。2 近年来,人们越来越关注开发适合进一步使用的废旧电池、模块和电池组的用途:这种方法的发展最终应该会降低储能成本,并促进电网中可再生能源的更广泛使用。3
我们从操作的角度开发了量子现象的可能性语义形式。该语义系统基于准备过程和是/否测试之间的 Chu 对偶,目标空间是具有信息解释的三值集。为状态空间引入了一组基本公理。这组基本公理足以将状态空间约束为射影域。然后在该域结构中表征纯状态子集。在指定属性和测量的概念之后,我们探索了测量之间的兼容性和最小干扰测量的概念。我们通过要求存在一个区分是/否测试的方案来实现状态空间上域结构的表征,这是在状态空间上构建正交关系的必要条件。关于状态空间的最后一个要求将相应的射影域限制为正交补。然后在状态空间上定义正交关系并研究其性质。有了这种关系,纯态正交闭子集的正交集自然继承了希尔伯特格的结构。最后,系统的对称性被描述为 Chu 态射的一般子类。我们证明这些 Chu 对称性保留了最小扰动测量类和状态之间的正交关系。这些对称性自然导致在纯态正交闭子集上定义的希尔伯特格的正交态射。
速度极限(1μs门= 1 MHz速率)来自对“重”粒子(1个离子)的光学操纵。要以速率获得精确的控制,需要以速率»1000 R的经典电子设备。所有方法都具有经典控制的速度限制。因此,显然是“更快”的方法(量子点等)在实践中可能并非如此。
我们的世界正在经历一场巨大的数字化变革。我们的社会、信息、政治、经济、文化和生物领域几乎没有什么保持不变。当我们试图理解和思考这些变化时,哲学能做出什么贡献?数字化如何挑战过去关于我们是谁以及我们将走向何方的观念?它将我们的道德愿望和珍视的民主、平等、隐私、信任、自由和社会根基理想置于何地?谁来决定、控制和利用数字化的力量,以及为了什么目的?从认识论的角度来看,我们大多数人是否理解我们新世界的这些新媒介——以及新结构?最后,新的技术格局如何塑造我们的生活条件,以及我们的集体想象和自我认同?