本文提出了一种通过 ADT 以光解作为加速因子来确定 PMOLED 屏幕寿命的方法。用于光解的光由发射 405 nm 的 LED 产生。该方法的特殊性在于它使用可见光谱中的光。该方法可以在不修改屏幕的情况下使用最少的硬件来构建测试台。发射 405 nm 光的 LED 可以通过具有控制达林顿晶体管的运算放大器的组件来控制。该组件放置在不透明的盒子下方,以避免暴露于其他光源。一切都通风,以便测试台的不同部分保持在室温。选择进行测试的屏幕是 UG-9664HDDAG01,405 nm LED 是 LZ1-10UA00-00U8。调整 LED 以产生 140 W/m 2 至 1090 W/m 2 之间的不同辐照度。观察到的退化表明,当屏幕像素处于活动状态时,其退化速度明显更快。测试期间关闭的设备也会受到影响,但其性能下降程度不太明显。每 24 小时使用功率计进行一次辐照度测量,功率计调整至屏幕发出的主波长。根据有关OLED的科学文献,已知发射蓝光的有机材料具有持续时间
本文介绍了一种在可见光谱中间接发射光谱法测定 CO 2 的系统和方法。该系统和方法通过使用微等离子体光谱仪实现,该光谱仪首先将 CO 2 转化为 CO,然后测量 560 nm 处的 CO Ångström 系统 (B 1 Σ + → A 1 Π) 的发射。实验是在混合了 N 2 和空气的 CO 2 气态样品上进行的,浓度在 0.01% 到 100% 之间。除了微等离子体光谱仪之外,还通过残余气体分析仪的质谱法监测该过程。发现 CO 2 到 CO 的转化效率非常高,在接近 100% 的选择性下达到最大值 41%。此外,CO Ångström 系统能够出色地测量 10% 以下的 CO 2 浓度,线性度为 R 2 > 0.99,预期检测限在千分之一范围内。结果中最有希望的方面是,分析是在极小的总样品量上进行的,其中流经系统的气体流量在 0.1 μ 摩尔/秒范围内。因此,本系统有望填补当前传感器技术的空白,其中廉价且易于使用的光学系统(例如非色散红外传感器)无法处理少量样品,而可以处理此类样品的质谱仪仍然昂贵、复杂且笨重。
实时缺陷检测对于激光定向能量沉积 (L-DED) 增材制造 (AM) 至关重要。传统的现场监测方法利用单个传感器(即声学、视觉或热传感器)来捕获复杂的过程动态行为,这不足以实现高精度和稳健性的缺陷检测。本文提出了一种新颖的多模态传感器融合方法,用于实时位置相关的机器人 L-DED 过程中的缺陷检测。多模态融合源包括捕捉激光-材料相互作用声音的麦克风传感器和捕捉同轴熔池图像的可见光谱 CCD 相机。提出了一种混合卷积神经网络 (CNN) 来融合声学和视觉数据。本研究的主要创新之处在于不再需要传统的手动特征提取程序,原始熔池图像和声学信号直接由混合 CNN 模型融合,该模型无需热传感模式即可实现最高的缺陷预测准确率 (98.5%)。此外,与以前基于区域的质量预测不同,所提出的混合 CNN 可以检测到缺陷发生的开始。缺陷预测结果与现场获取的机器人工具中心点 (TCP) 数据同步并注册,从而实现局部缺陷识别。所提出的多模态传感器融合方法为现场缺陷检测提供了一种可靠的解决方案。
摘要。使用矢量线性离散纵坐标辐射传输 (VLIDORT) 代码作为前向模型模拟的主要驱动程序,开发了一种首创的数据同化方案,用于将臭氧监测仪 (OMI) 气溶胶指数 (AI) 测量值同化到海军气溶胶分析和预测系统 (NAAPS)。这项研究表明,与 NAAPS 自然运行的值相比,使用 OMI AI 数据同化可以显著降低 NAAPS 分析中的均方根误差 (RMSE) 和绝对误差。模型模拟的改进证明了 OMI AI 数据同化对于多云区域和明亮表面的气溶胶模型分析的实用性。然而,单独的 OMI AI 数据同化并不优于在无云天空和黑暗表面使用被动式气溶胶光学厚度 (AOD) 产品的气溶胶数据同化。此外,由于 AI 同化需要在前向模拟中部署完全多散射感知辐射传输模型,因此计算负担是一个问题。尽管如此,新开发的建模系统包含了紫外 (UV) 光谱中辐射同化的必要成分,我们的研究表明,未来在紫外和可见光谱中直接辐射同化,可能与 AOD 同化相结合,可用于气溶胶应用。可以添加其他数据流,包括来自对流层监测仪 (TROPOMI) 的数据、
STS-56 徽章 STS056-S-001 – STS-56 发现号轨道飞行器 (OV) 103 任务徽章是从机组人员视角看到的 STS-56 应用与科学大气实验室 2 (ATLAS-2) 任务的图形表示。有效载荷舱 (PLB) 上描绘了 ATLAS-2 托盘、航天飞机太阳背向散射紫外线 (SSBUV) 实验和 Spartan——飞行中的两个主要科学有效载荷。由于 ATLAS-2 是“地球任务”项目的一部分,机组人员在艺术品中突出描绘了地球。两个主要研究领域是大气和太阳。为了突出这一点,地球大气层被描绘成一个程式化的可见光谱,日出则用放大的双色日冕表示。任务指挥官和飞行员的姓氏刻在地球区域,任务专家的姓氏出现在太空背景中。他们是任务指挥官 Kenneth Cameron、飞行员 Stephen S. Oswald 和任务专家 Michael Foale、Kenneth D. Cockrell 和 Ellen Ochoa。每位机组人员都为徽章的设计做出了贡献。NASA 航天飞机飞行徽章设计仅供宇航员使用,并供 NASA 局长授权的其他官方使用。仅以各新闻媒体的插图形式向公众开放。如果本政策有任何变化(我们预计不会发生),我们将公开宣布。照片来源:NASA 或美国国家航空航天局。
纳米技术是一个引人入胜的研究领域,这是由于生产具有不同形状,大小,化学成分,分散性的纳米颗粒及其对人类的多种应用。操纵,创建和使用金属纳米颗粒非常重要。因此,获得了独特的热,电子和光学特性。由于较低的时间成本和能量,与物理和化学过程相比,纳米颗粒的生物合成方法优先考虑。纳米颗粒的绿色合成是一种使用天然溶剂的环保技术。当前的工作包括使用Cu(NO3)2的Cunps的环保和绿色合成。H 2 O溶液和石榴提取物的剥离。石榴果皮提取物中存在各种生物汤匙,作为该合成的还原剂。在紫外可见光谱中在350 nm处达到的表面等离子共振(SPR)峰确认了形成的CUNPS。基于SEM分析,获得了球形均匀和形态大小的颗粒(36.99-55.17 nm)。FTIR光谱清楚地说明了由石榴果皮提取物介导的铜纳米颗粒的绿色合成。使用XRD与CUNPS(111、200、220和400)面对面的立方相(FCC)相的反射进行XRD进行了结构表征。发现生物合成的铜纳米颗粒有效地控制了人类病原体的进展,即沙门氏菌。
摘要:全球生物多样性的迅速下降需要创新的保护策略。本文探讨了人工智能 (AI) 在野生动物保护中的应用,重点介绍了 Conservation AI 平台。Conservation AI 利用机器学习和计算机视觉,使用可见光谱和热红外摄像机检测和分类动物、人类和与偷猎有关的物体。该平台使用卷积神经网络 (CNN) 和变压器架构处理这些数据,以监测物种,包括那些极度濒危的物种。实时检测为时间紧迫的情况(例如偷猎)提供了所需的即时响应,而非实时分析则支持长期野生动物监测和栖息地健康评估。来自欧洲、北美、非洲和东南亚的案例研究突出了该平台在物种识别、生物多样性监测和偷猎预防方面的成功。本文还讨论了与数据质量、模型准确性和后勤约束相关的挑战,同时概述了未来的方向,包括技术进步、扩展到新的地理区域以及与当地社区和政策制定者的更深入合作。保护人工智能代表着在解决野生动物保护的紧迫挑战方面迈出了重要一步,提供了可在全球范围内实施的可扩展、适应性强的解决方案。
散射(基于SER)的传感器在敏感性,效率和便携性方面提供了许多传统传感器的优势。等离子底物以高度开发的纳米结构金属的形式形式显示,已显示出对拉曼散射信号的显着增强(最多10 7次)的显着性增强(有机/生物/生物有机分子,底层质量,且无机的晶体 - 晶体质体nano-scressor nanano-nanano-nanano-nanano-nanano-nanano crenivers nanano corneminity the semogange cants cants s lms。 (LSPR)。13 - 15使用纳米光刻的金属纳米簇阵列组成的等离子底物的制造允许研究谐振效应,以增强对位于不同大小的金属纳米粉丝的分析物的增强。15用于等离子材料,金和银主要使用。第一个是一种惰性材料,在正常条件下不进行化学反应,但可以提供足够的等离激元增强。第二个,尽管是反应性的,但具有介电功能的高度假想部分,因此具有强大的等离子增强功能。两种材料都广泛用于可见光谱范围内的SER和TERS实验。石墨烯用于创建此类传感器,原因有几个。首先,由于石墨烯是导体,因此可以激发自己的等离子体,从而激发
抽象的自适应多色滤波器已成为确保室外视觉设备的色彩准确性和分辨率的关键组成部分。但是,该技术的当前状态仍处于起步阶段,并且主要依赖于需要高压和笨重的结构设计的液晶器件。在这里,我们提出了由多层“活性”等离子体纳米复合材料组成的多色纳米过滤器,其中将其中的金属纳米颗粒嵌入了导电聚合物纳米纤维中。这些纳米复合材料使用晶圆级的“无光刻”方法以低于100 nm的总厚度制造,它们固有地表现出三种突出的光学模式,伴随散射现象,产生不同的二分色反射和透射颜色。在这里,关键的成就是所有这些颜色均通过施加的外部电压小于1 V进行电气操纵,其开关速度为3.5 s,涵盖了整个可见光谱。此外,这种可编程的多色函数可以在温暖的频谱(3250 K - 6250 K)上对白光的色温进行有效和动态调节。这种变革能力对于增强户外光学设备的性能非常有价值,这些设备独立于诸如太阳海拔和盛行天气状况之类的因素。
二维(2D)过渡金属二北元化(TMD)是原子上薄的半导体,在整个可见光谱中具有有希望的光学应用。然而,它们本质上弱的光吸收和低光质量量子产率(PLQY)限制了它们的性能和潜在用途,尤其是在紫外线(UV)波长光范围内。衍生自2D材料(2D/QD)的量子点(QD)提供有效的光吸收和发射,可以调节能量的光波长。在这项研究中,我们通过与2D/QD的杂交(尤其是Ni-Tride MXENE MXENE MXENE MXENE MXENE MXENE QD(TI 2 N MQD)和nitride nitride QD)(GCD)(GCD)(GCD)(GCNQ)(GCNQ)(gcnqd),通过杂交与2D/QD杂交在UV范围内大大增强了单层(1L)二硫键(WS 2)的光子吸收和PLQ。With the hybridization of MQD or GCNQD, 1L- WS 2 showed a maximum PL enhancement by 15 times with 300 nm wavelength excitation, while no noticeable enhance- ment was observed when the excitation photon energy was less than the bandgap of the QD, indicating that UV absorp- tion by the QD played a crucial role in enhancing the light emission of 1L-WS 2 in our 0D/2D混合系统。我们的发现提出了一种方便的方法,用于增强1L-WS 2的光响应到紫外线,并为使用1L-TMD收集紫外线能量提供令人兴奋的可能性。