本文探讨了时空编码在波束控制中的应用,使用 1 位、2 位和 3 位可重构编码超表面。通过周期性地改变时间域中的代码排列,实现了在空间和时间上具有代码顺序的超表面。选定的代码用于在雷达传感系统应用中将波束引导到不同的方向。通过控制每个代码序列中不同位的位置来改变谐波信号的相位。8×8 单元格元素(120×120×3.2 mm 3 )的构造涉及使用充满惰性氩气的接地介电容器。超表面逻辑状态通过惰性气体的电离度来控制,时间切换控制谐波频率。研究了不同的时间切换序列用于波束控制。使用 CST Microwave Studio 分析了所提出的编码超表面,并使用 MATLAB 将结果与解析解进行了比较。
摘要。目的。本研究对开放的脑电图数据集进行了广泛的脑机接口 (BCI) 可重复性分析,旨在评估现有解决方案并建立开放且可重复的基准,以便在该领域进行有效比较。这种基准的必要性在于快速的工业进步,这导致了未公开的专有解决方案的产生。此外,科学文献密集,通常以难以重复的评估为特色,使现有方法之间的比较变得困难。方法。在一个开放的框架内,30 个机器学习管道(分为原始信号:11、黎曼信号:13、深度学习:6)在 36 个公开可用的数据集中被精心重新实现和评估,包括运动想象 (14)、P300 (15) 和 SSVEP (7)。该分析结合了统计荟萃分析技术来评估结果,包括执行时间和环境影响考虑。主要结果。该研究得出了适用于各种 BCI 范式的原则性和稳健性结果,重点是运动想象、P300 和 SSVEP。值得注意的是,利用空间协方差矩阵的黎曼方法表现出优异的性能,强调了需要大量数据才能通过深度学习技术实现具有竞争力的结果。综合结果是公开的,为未来研究进一步提高 BCI 领域的可重复性铺平了道路。意义。这项研究的意义在于它有助于为 BCI 研究建立严格透明的基准,提供对最佳方法的见解,并强调可重复性在推动该领域进步方面的重要性。
Accellix数据的手动门控通常从分析在整个数据采集范围内收集的事件的FSC开始,并使用FSC-A的双变量图到高峰时间,从而产生时间门(图1A)。然后,使用信号残差参数(图1B)将内部对照珠与事件库分开,并通过CD45阳性鉴定细胞(未显示)。在健康人血中发现的典型细胞子集的大小是众所周知的。根据这些信息,使用了与这些细胞集匹配的微球(流式细胞仪尺寸校准套件,CAT#F13838,Thermofisher Scientific)。这些微球不会荧光,而是根据FSC特性易于识别(图1C)。
•所有OECD 301测试结果的累积结果显示为框图。左侧的灰色框分别表示28天后的结果。彩色盒子在测试结束时显示结果(60.1±6.6天)。盒子由25%四分位数界定,中间位于中间。计算出的平均值表示为杂交。垂直线代表最高和最低的单个测试结果,离群值显示为点。星号表示显着性(Student's T-测试): * P <0.05,** P <0.01和*** P <0.001。
在认知神经科学领域,功能性近红外光谱 (fNIRS) 已成为非侵入性探测伴随神经活动的血流动力学反应的重要工具。该技术使研究人员能够通过头骨观察大脑活动,从而促进认知功能和神经发育过程的研究(Boas 等人,2014)。尽管 fNIRS 具有巨大潜力,但由于商业系统的高成本,它无法融入更广泛的研究实践,只能在资金充足的实验室使用(Pinti 等人,2018)。这种可用性受限给数据的验证和可重复性带来了挑战,阻碍了更广泛人群使用 fNIRS 技术。因此,很难将研究结果扩展到这些人群进行验证。
*2文档打印速度是默认单纯模式的Office类别测试ESAT(Word,Excel,PDF)的平均值,ISO/IEC 24734。照片打印速度基于使用ISO/JIS-SCID N2在Photo Paper Plus Plossy II上的默认设置,并且不考虑主机计算机上的数据处理时间。打印速度可能会因系统配置,接口,软件,文档复杂性,打印模式,页面覆盖,使用的纸张类型等而有所不同。
摘要 - 同构加密(FHE)是备受关注的隐私解决方案,但是FHE的高计算开销对其实际采用构成了挑战。尽管先前的研究试图设计ASIC加速器来减轻开销,但他们的设计需要过多的芯片资源(例如,区域)来包含和处理大量操作数据。我们提出了一个基于芯片的FHE加速器Cifher,它具有可重大的结构,以通过具有成本效益的多芯片模块(MCM)设计来应对挑战。首先,我们设计了一种灵活的核心体系结构,其配置可调节以符合chiplets的全球组织和设计约束。其独特的功能是一个可组合功能单元,为数字理论变换提供了不同的计算吞吐量,这是FHE中最主要的函数。然后,我们建立了一般的数据映射方法,以最大程度地减少互连开销,当将芯片组织到MCM包装中时,由于包装约束,这将变成了重要的瓶颈。这项研究表明,由许多紧凑型芯片组成的Cifher软件包提供的性能可与最先进的单片ASIC加速器相提并论,同时大大降低了整个包装范围的功耗和制造成本。索引术语 - 同构加密,域特异性档案,chiplet
纠缠对于许多量子应用至关重要,包括量子信息处理,量子模拟和量子增强感应。由于其丰富的内部结构和相互作用,已经提出了分子作为量子科学的有前途的平台。确定性分子的确定性纠缠仍然是长期以来的实验挑战。我们证明了单独制备的分子的需求纠缠。使用通过使用可重构光学镊子阵列制备的分子对之间的电偶极相互作用,我们确定创建了分子的钟形对。我们的结果证明了量子应用所需的关键构建块,并且可能会推进使用捕获分子的量子增强基本物理测试。e
3 伦敦都市大学通信技术中心,伦敦 N7 8DB,英国;b.virdee@londonmet.ac.uk、i.garciazuazola@londonmet.ac.uk、a.krasniqi@londonmet.ac.uk,4 马德里卡洛斯三世大学信号理论与通信系,28911 Leganés,马德里,西班牙;mohammad.alibakhshikenari@uc3m.es 5 伊拉克 Al-Turath 大学医疗器械技术工程系;amna.shibib@ieee.org 6 土耳其伊斯坦布尔 34220 Esenler 伊尔迪兹技术大学电子与通信工程系;nturker@yildiz.edu.tr 7 沙特阿拉伯利雅得国王沙特大学工程学院,POBox 800,利雅得 11421, drskhan@ksu.edu.sa 8 英国爱丁堡龙比亚大学计算工程与建筑环境学院; n.ojaroudiparchin@napier.ac.uk 9 巴勒莫大学工程系,viale delle Scienze BLDG 9,巴勒莫,IT 90128,西西里岛,意大利; patrizia.livreri@unipa.it 10 上法兰西理工大学,微电子和纳米技术研究所 (IEMN) CNRS UMR 8520,ISEN,里尔中央大学,里尔大学,59313 Valenciennes,法国; iyad.dayoub@uphf.fr 11 法国上法兰西学院,F-59313 瓦朗谢讷,法国 12 恩纳科雷大学工程与建筑学院,94100 恩纳,意大利;giovanni.pau@unikore.it 13 魁北克大学国立科学研究院 (INRS),蒙特利尔,魁北克,H5A 1K6,加拿大;sonia.aissa@inrs.ca 14 罗马“Tor Vergata”大学电子工程系,Via del Politecnico 1,00133 罗马,意大利;limiti@ing.uniroma2.it 15 阿拉伯科学、技术和海运学院电子与通信工程系,开罗 11865,埃及;mohamed.fathy@aast.edu
该出版物是作为“循环城市实验室 - 城市可重复使用的包装系统”项目开发的,该项目旨在通过促进经济上可行的可重复使用的系统并加强妇女和女性Entre Preneurs在当地循环经济体中的参与来减少温室气体(GHG)排放。与当地利益相关者合作,该项目将在四个不同的城市建立循环城市实验室。在这些实验室,企业,城市政府,学术界和民间社会中,共同参与了功能性和包容性的循环经济,并探索可重复使用的包装和相关业务模型的潜力。该项目是由德国Gesellschaftfürinternationale Zusammenarbeit(GIZ)与ICELEI合作,并代表德国联邦经济合作与发展部(BMZ)进行的。
