非线性光学在激光技术中有着广泛的应用,包括光参量放大、电光开关、倍频和混频。从技术角度来看,研究非线性光学 (NLO) 特性对于设计 NLO 设备和理解控制光与物质相互作用的潜在机制至关重要。超短激光脉冲可以通过利用 NLO 特性、可饱和吸收 (SA) 来产生,因此可饱和吸收体是脉冲激光器中的关键光学元件。半导体可饱和吸收镜 (SESAM) 因其高稳定性而在商业上用作可饱和吸收体,但它具有制造工艺复杂和带宽有限的缺点。1 为了开发超快激光器,需要不同的 NLO 材料
早在1959年,理查德·费曼在题为“底部有足够的空间”的演讲中就提到了层状材料的概念。[1] 然而直到几十年后的今天,我们似乎才通过坚持不懈的努力,对二维材料这个神秘的物种有了更清晰的认识。[2] 对于具有纳米结构的二维材料,在平面上确定传热和电荷时会出现独特的物理奇异性,这使得它们引起了从超快光子学[3–9]电子/光电子器件[10–22]高性能传感器[23–30]生物医学[31–42]到光调制[43–51]等领域的广泛关注。 在过去的几年中,二维材料的整体格局不仅得到了极大的扩展,而且在其开发和应用方面也得到了很大的创新。 其中最引人注目的应用是非线性光学,它掀起了激光创新的狂潮。在众多现有的超短脉冲产生技术中,基于可饱和吸收体(SA)的被动锁模光纤激光器(MLFL)由于具有光束质量好、结构紧凑、成本低廉、兼容性好等优点,成为实现超短脉冲最有效的途径之一。虽然可饱和吸收体的发展经历了染料、半导体可饱和吸收镜(SESAM)等,但自从石墨烯材料的成功制备和应用以来,在光纤激光器中掀起了基于二维材料的可饱和吸收体制备研究的热潮。由于二维材料的光学非线性,基于二维材料的可饱和吸收体可以周期性地调制激光腔内环流光场,引起大量纵模发生相位振荡,从而在时间域上形成有规律的短脉冲串。非线性吸收机理主要由泡利不相容原理引起,使得材料在强光作用下,当有大量电子处于上激发态时,瞬间吸收较小。自石墨烯问世以来,更多的二维材料被认可并在激光领域得到应用。到目前为止,研究热点主要集中在几种代表性材料或与它们相关的一些异质结材料上,包括1)石墨烯;2)拓扑绝缘体(TIs);3)黑磷
摘要:氧化钇(Y 2 O 3 )因其在各种高强度结构部件、微电子和光电子器件中的潜力而受到关注,但这种有前途的材料的非线性光学研究尚未实施。本文不仅理论计算了Y 2 O 3 的电子能带结构,而且以光纤激光器为平台验证了Y 2 O 3 的光学非线性。同时,通过使用不同厚度的Y 2 O 3 可饱和吸收体,进一步探究了样品厚度对激光性能的影响。结果表明Y 2 O 3 不仅具有良好的光学非线性,而且通过调节Y 2 O 3 的厚度有利于超快光子的研究。因此,Y 2 O 3 可以作为一种潜在的可饱和吸收体候选者进行深入的研究和应用。
摘要:超表面作为由亚波长结构构成的人工材料,具有强大的调控线性和非线性光场的能力,极大地推动了纳米光子学的发展。最近,等离子体超表面已被证明可以作为可饱和吸收体(SA),其调制性能远高于其他SA,表现出优异的非线性偏振传递函数。然而,由于等离子体共振的偏振依赖性,超表面饱和吸收体的工作带宽通常很窄,不利于宽带超快激光的产生。本文,我们提出了一种银双纳米棒等离子体超表面,实现了稳定的宽带饱和吸收,这归功于双棒结构独特的间隙共振模式。泵浦光同时激发精心排列的银纳米棒上的偶极共振和纳米棒对之间的间隙模式,提高了超表面可饱和吸收体的响应带宽。通过将超表面插入光纤激光器腔内,分别获得了工作在1.55和1.064 μ m处的稳定脉冲序列。该工作不仅进一步释放了超表面在超快激光领域的潜力,也为宽带非线性器件的设计提供了新的思路。关键词:等离子体超表面,宽带,可饱和吸收体,超快激光器,光纤激光器
实施需要相当复杂的装置,以便进行一般[3]以及Mir Light的检测[4]。相反,由于该波长可以直接从TM 3 +掺杂的活性二氧化硅纤维中获得,并由Ingaas光二极管检测到[5],因此更容易访问2 µm频带。可以利用纤维激光系统的优势,包括它们对环境影响的可伸缩性和鲁棒性,我们开发了一种Thulium掺杂的纤维激光器(TDFL),可在1948 nm波长处进行560 FS长脉冲。使用各种可饱和吸收剂(SA)材料的模式锁定激光器,例如半导体SA镜(SESAMS)[6],碳纳米管(CNTS)[7,8]或Graphene [9] [9],都是良好的。这些材料非常有用,因为它们使模式锁定激光器
摘要:氧化钇(Y 2 O 3 )具有良好的物理和光电性能,被广泛应用于金属增强复合材料、微电子器件、波导激光器、高温防护涂层等。然而,目前对Y 2 O 3 作为可饱和吸收体(SA)在光纤激光器中的非线性光学应用研究很少。本文展示了一种以Y 2 O 3 为Q开关器件的被动Q开关近红外光纤激光器。采用双探测器测量技术测量了磁控溅射法制备的Y 2 O 3 SA的光学非线性特性,发现所提出的Y 2 O 3 SA的调制度为46.43%。实现的Q开关激光器在1530 nm处提供26 mW的平均输出功率,脉冲持续时间为592.7 ns。据我们所知,这是第一份关于 Y 2 O 3 作为近红外光纤激光器 Q 开关的光学非线性报告,这可能会加深对 Y 2 O 3 光学非线性特性的理解,并进入光调制和光电器件的潜在市场。
Ultrafastber激光器广泛用于各种军事和平民应用中,1 - 3,例如光学通信4和精确加工。5,6产生超短脉冲的主要方法之一是被动模式锁定的技术,其中关键是将饱和吸收器(SA)引入激光腔。模式锁定的ber激光器可以使用合适的配对作为SAS实现,从而在性能和输出稳定性方面具有优势。6现有的饱和吸收材料包括半导体可饱和吸收镜7,8和由石墨烯,9,10钼二钼de(MOS 2)11,12和黑磷所代表的二维材料。13,14此外,多种材料已用于超快激光器中的模式锁定设备,包括SNSE 2,15 GEAS 2,16 RGO-CO 3 O 4(参考17)和WCN。18然而,对SAS使用的新材料的调查仍处于早期阶段。因此,有必要探索新型材料作为具有出色非线性光学特性的替代SAS,以实现模式锁定的超短脉冲激光器。
在 D 维格子上距离 r 中的 α ≤ D — 近年来引起了人们的极大兴趣。它们存在于量子计算和模拟的主要实验平台中,以及量子信息加扰和快速纠缠产生的理论模型中。由于此类系统不具备局部性概念,因此人们对其动态特性缺乏一般性的了解。为了解决这个问题,我们证明了两个新的 Lieb-Robinson 型界限,它们限制了强远程相互作用系统中信号发送和加扰的时间,此前尚无此类系统的严格界限。我们的第一个界限适用于可映射到具有远程跳跃的自由粒子汉密尔顿量的系统,并且对于 α ≤ D/ 2 是可饱和的。我们的第二个界限适用于一般的远程相互作用自旋汉密尔顿量,并给出了对所有 α < D 的系统广泛子集的信号发送时间的严格下限。这种多站点信号传输时间限制了强远程相互作用系统中的加扰时间。
在波动波参数放大器(TWPA)中,低损耗电容器对于提供50Ω的阻抗与增加的电感相匹配的50Ω阻抗,而不是通过用于放大的非线性元件所带来的电感,无论是Josephson连接点还是高动力敏感材料。在这里,我们报告了真空隔离微带的制造过程的开发,该设计的设计在无介电支持的情况下,地面平面悬挂在中心导体上方的附近。除了高电力传输线外,该体系结构还可以启用空气桥和紧凑的并行板电容器。在低温稀释冰箱设置中,使用分布式铝和颗粒铝谐振器进行了制造的性能,显示出与最先进的TWPA中使用的Fabripation过程相同的质量因素。除了表征质量因素对功率的依赖性外,还探索了它们在温度方面的行为,采用基于热准准颗粒和可饱和的两级系统(TLS)的模型,表明谐振器的质量因素受TLS的限制。
我们证明,可以设计中红外跨带过渡的吸收饱和,以10-20 kW cm 2的中等光强度和室温下。该结构由一系列具有明智设计的253 nm厚的GAAS/ALGAAS半导体异质结构的金属 - 气管导体 - 金属金属斑块组成。在低入射强度下,结构在强光 - 耦合方面起作用,并在接近8.9 L m的波长下表现出两个吸收峰。饱和作为向弱耦合方案的过渡,因此,在增加入射强度时向单峰吸收。与耦合模式理论模型进行比较解释了数据,并允许推断相关的系统参数。当泵激光器在空腔频率上调谐时,随着入射强度的增加,反射率会降低。相反,当激光器以极化频率调谐时,反射性非线性会随着入射强度的增加而增加。在这些波长下,系统模仿了MID-IR范围内可饱和吸收镜的行为,这是当前缺失的技术。