摘要 —动态负载需求会影响输出到负载的功率,这可能无法满足海上石油和天然气装置的 IEC 标准 61892-1。海上石油钻井平台的高功耗需要大型天然气和风力涡轮机发电,而这些发电无法快速反应以增强暂态稳定性。因此,设计了一种能源管理系统 (EMS),该系统带有电池储能系统 (BESS),以取代石油钻井平台上燃气轮机的部分输出功率,以实现最佳暂态响应。我们设计的 EMS 与目前的最先进技术不同,它不使用低通滤波器,从而提高 BESS 的快速响应,同时提高输出到负载的功率质量。我们的 EMS 在模拟中通过最大暂态电压和频率偏差进行了验证,以说明暂态稳定性结果的改善。索引词 —电池储能系统、海上可再生能源系统、石油和天然气平台、暂态稳定性
全球在线劳动力市场在短时间内实现了 90% 的整体指数增长。图 1 显示了零工经济在线项目的大幅波动,这主要是由于 Covid19 疫情期间的季节性变化。图 1:在线劳动力指数(全球在线零工经济的表现和趋势)
Ashley Winslow 博士,总裁兼首席科学官 • 剑桥大学医学遗传学博士 • 麻省总医院和哈佛医学院博士后 • 辉瑞研发、精准医学和人类遗传学及计算生物医学 • 宾夕法尼亚大学孤儿病中心
流程和技术。为了应对这些挑战,同时确保监管合规性,企业通常会采用耗时且复杂的手动解决方法,而以这种方式对订阅模式进行核算可能会变得难以管理。实施旨在按照 IFRS15/ ASC 606 原则自动执行收入核算的收入管理解决方案可以帮助消除手动流程并优化收入功能。收入确认的复杂性将因业务或行业而异,因此最好的工具可以在如何识别客户合同、如何满足履约义务和如何生成会计信息方面提供灵活性。根据具体情况,合同修改可以作为调整或新合同进行核算,最好的 ERP 工具可以配置为处理任何情况。订阅给整个财务生态系统带来了挑战,从新的税收影响到报告披露,企业必须配备工具来应对这些挑战。
摘要:由于向未来智能电网的过渡,可再生能源 (RES) 的普及率不断提高,需要大量参与电力流动的电力转换器。这些设备中的每一个都需要使用复杂的控制和通信系统,因此需要一个用于测试真实场景的平台。迄今为止,已经提出了几种测试技术,这些技术需要在成本、测试覆盖率和测试保真度之间进行权衡。本文介绍了一种通过开发模拟器来测试微电网的方法,重点是微型逆变器单元和灵活配置不同电网拓扑的可能性。与其他方法相比,我们的测试平台的特点是体积小,并且出于安全目的显著降低了电压。检查主要集中在逆变器行为上。测试场景包括负载变化时的行为、并网和孤岛模式之间的转换、后续逆变器的连接和移除以及逆变器的优先级。
认识到没有一种单一的电网架构可能占据主导地位,NIST 开发了多种场景(例如微电网和混合系统),使我们能够从不同角度检查互操作性要求。在这些场景中,需要不同的控制算法和通信接口,并且系统边缘的设备越来越依赖于共享基础设施。确定不同的通信和控制选项可能有助于确定哪些接口最适合标准化。NIST 智能电网测试平台旨在帮助测试、测量和评估上述控制算法和通信接口,以补充智能电网互操作性框架和路线图中的见解和想法。
认识到没有一种单一的电网架构可能占据主导地位,NIST 开发了多种场景(例如微电网和混合系统),使我们能够从不同角度检查互操作性要求。在这些场景中,需要不同的控制算法和通信接口,并且系统边缘的设备越来越依赖于共享基础设施。确定不同的通信和控制选项可能有助于确定哪些接口最适合标准化。NIST 智能电网测试平台旨在帮助测试、测量和评估上述控制算法和通信接口,以补充智能电网互操作性框架和路线图中的见解和想法。
1.1定义。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>.25 1.2符号和缩写。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>.33 1.3关键字。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.35 1.4惯例。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.36
摘要 — 在离网配置下,海上油气平台与海上风电场的电气化是北海正在开发的一种商业模式。因此,本文提出了一种由海上浮动风力发电机组和油气生产平台组成的集成系统,该系统配有机载电池储能系统 (BESS)。利用这个拟议的系统,在 ETAP 中模拟了四种不同的测试场景,模块化电池储能系统 (BESS) 的容量各不相同。结果表明,传统系统和仅配备 1MW BESS 的拟议系统 1 的暂态稳定性特性不符合油气平台的 IEC 标准。通过将 BESS 的容量加倍,ETAP 模拟结果表明,拟议系统 2 的暂态偏差有所降低,符合 IEC 标准 IEC 61892-1。此外,本文还介绍了拟议系统 2 的资本支出 (CapEx) 和运营支出 (OpEx)。索引词 — 能源存储、微电网、石油平台、电能质量、可再生能源
• DM.2e @ 15W • DM.2 @ 25W • PCIe/HHHL @ 75W • AI 核心 (AIC) - 最多 16 个核心 • 精度 – INT8、INT16、FP16、FP32 • 片上 SRAM – 最多 144 MB • 4x64 LPDDR4x (2.1GHz) 带内联 ECC