摘要 - 风洞 (WT) 是一种人工产生相对于静止物体的气流并测量空气动力和压力分布的装置,模拟实际情况,其重要方面是准确模拟流体流动的全部复杂性。本研究的目的是设计一个小型、开路(也称为埃菲尔型)和亚音速(低速)风洞 (WT) 的三维几何形状,能够展示或充当航空力学研究的重要工具。该项目和制造本身是一项繁重的任务,其焦点/中心主题是描绘/描述风洞组件,例如测试部分、收缩锥、扩散器、驱动系统和沉降室。本文还描述了 WT 的历史、类型、重要性和应用,旨在作为解剖/详细分析。引用了大量有关 CFD(计算流体动力学)的信息,这是一门研究如何通过求解数学方程来预测流体流动、传热、化学反应和其他现象的科学,并将其与湍流模型结合使用,以获得正确和理想的 Open WT,并验证流体流动的性能。通过分析风洞中的速度分布模式、压力分布和流体湍流强度来进行 CFD。CFD 可以洞察使用流量台架测试无法捕捉到的微小流动细节。还讨论了所采用的设计、预示流体流动的数学、遵循的指导方针、获得的结果和进一步的范围。
摘要 本文介绍了一项关于旋转磁场 (RMF) 推进器低推力效率的实验研究。该技术成熟度较低,但可能成为使用替代推进剂实现高功率太空推进的候选技术。对 5 kW 级 RMF 推进器进行了直接推力台架测量,结果显示推力效率为 0.41 ± 0.04%,比冲为 292 ± 11 s - RMF 推进器运行的典型值。使用一套远场探测器为 RMF 推进器性能的现象学效率模型提供信息,该模型考虑了发散、功率耦合、质量利用率和等离子体/加速效率。结果发现等离子体效率处于临界低值,为 6.4 ± 1.0%。这表明 RMF 天线耦合到等离子体的大部分能量在转换为推进器光束中的定向动能之前就丢失了。为了确定这些损失的来源,使用三重朗缪尔探针对内部等离子体特性进行了时间分辨测量。发现碰撞激发辐射和壁面损失是两个主要的损失过程。与其他电力推进结构相比,该装置表现出异常高的等离子体密度(> 10 19 m − 3),这可以解释这一趋势。根据效率分析的结果,讨论了探测技术的局限性以及改进 RMF 推进器性能的策略。
生产并测试所有单个部件后,组装了一个可操作的原型机。原型机在 PBS 试验台上进行了地面台架测试,并达到了推力、油耗和使用寿命的目标值。从组织和财务角度来看,启动和飞行包线的验证都非常具有挑战性。最初打算在安装到 L-159 喷气式飞机上的特殊容器中测试发动机。然而,这些测试在捷克共和国的空域被证明是不切实际的。因此,该公司联系了莫斯科的中央航空发动机研究所 (CIAM),该研究所有一个用于测试航空发动机的热压室。该系统模拟指定飞行高度的环境条件——温度、压力和空速。发动机在整个飞行包线内都达到了要求的数值,受 0 至 10,000 m 高度和 0 至 0.88 M 空速的限制。启动能力在 8,000 m 高度和 0.6 M 空速下经过验证。通过热压室测试,获得了宝贵的运行数据。这些数据不仅用于发动机特性的内部验证,还可以告知客户 TJ100 的飞行品质。针对无人机和靶机进行了优化和性能增强如今,PBS 的 TJ100 涡喷发动机针对无人机和靶机进行了专门设计、改进和优化。这是一款高性能发动机,具有出色的重量/推力比、延长的使用寿命和低油耗。它目前被评为世界上最好的小型涡喷发动机之一,是全球轻型飞行器的明智选择。
背景:ICU 中所有使用机械通气的患者都必须对吸气气体进行加湿,可以使用加热加湿器 (HH) 或热湿交换器 (HME)。最近的研究表明,对于 COVID-19 患者,加湿设备的选择可能会对患者的管理产生相关影响。我们报告了 2 个使用 HME 或 HH 的 ICU 的数据。方法:审查了魁北克市 2 个 ICU 中第一波疫情期间需要有创机械通气的 COVID-19 患者的数据。其中一个 ICU 使用了 HME,而另一个 ICU 使用了加热丝 HH。我们比较了呼吸机设置和调整呼吸机设置后第一天的动脉血气。报告了气管插管阻塞 (ETO) 或亚阻塞事件以及限制加湿不足风险的策略。在台架试验中,我们用湿度计测量了不同环境温度下 HH 的湿度,并评估了其与加热板温度的关系。结果:我们报告了 20 名 SARS-Cov-2 阳性受试者的数据,其中 6 名在使用 HME 的 ICU 中,14 名在使用 HH 的 ICU 中。在 HME 组中,尽管每分钟通气量较高(171 vs 145 mL/kg/min 预测体重 [PBW]),但 P aCO 2 较高(48 vs 42 mm Hg)。我们还报告了在使用 HH 的 ICU 中发生了 3 次 ETO。湿度台架研究报告了 HH 的加热板温度与输送湿度之间存在很强的相关性。在采取措施避免湿度不足后,包括监测加热板温度,不再发生 ETO。结论:COVID-19 患者使用的加湿装置的选择对通气效率(增加 CO 2 去除率,减少死腔)和与低湿度相关的并发症(包括在高环境温度下使用加热丝 HH 时可能出现的 ETO)有相关影响。关键词:加热加湿;热湿交换器;死腔;CO 2;COVID-19;气管插管阻塞。[Respir Care 2022;67(2):157–166。© 2022 Daedalus Enterprises]
1. 简介:添加了一条说明,说明 2022 年,ACC 将庆祝美国空军成立 75 周年和遗产飞行计划成立 25 周年。2. 第 1 章:措辞澄清了在美国本土或加拿大以外举办的展览的一些要求。3. 第 1 章:POC 姓名和/或联系信息已更新,包括新团队成员和其他个人,包括战鸟飞行员。4. 第 1 章:将 ACC/A3TA 活动营销招聘联络员更名为 ACC/A3TA 的空军招聘服务 (AFRS) 活动营销招聘联络员。5. 第 1 章:从 POC 列表中删除了 Red Horse Scheduler。临时拦阻装置的安装由 HQ ACC 航空活动办公室下列出的 POC 安排。6. 第 3 章和第 11 章:将公共关系更改为社区关系。 7. 第四章:将 A-10 团队所需房间数量要求从 8 间改为 9 间。8. 第六章:增加了在展览中心停放演示飞机和传统飞行战机的要求,停放在雷鸟飞行表演队、蓝天使飞行表演队或其他国家队旁边。9. 第六章:对 F-22、F-35 和 F-16 的拦阻装置要求进行了细微修改。(注:预计 F-16 要求将在今年晚些时候或明年发生变化,届时我们的新规定将获得批准——如果运行跑道(展览场地或集结地点)少于 10,000 英尺且 80 海里范围内没有永久拦阻装置,则可能需要临时拦阻装置)。 10. 第 6 章:添加了一条注释,以参考附件 1 清单,在第 6 章标题下,获得军事设施指挥官或民用/联合使用机场经理的书面签字批准,以便在紧急情况下使用他们的机场和拦阻装置供 ACC 演示飞机使用。11. 第 6 章:将要求改为请求在拦阻装置位置设立操作塔台和坠机救援。仍然需要消防部门。(添加了在麦克迪尔空军基地辅助机场和其他非管制机场使用 BAK-12 的详细信息)。12. 第 9 章:指出 F-35 也可以使用军用通用牵引杆。13. 第 9 章:重组了关于平台架和梯子的段落 - 要求没有变化。14. 第 9 章:添加了对 A-10 标准 50 加仑液氧维修车的要求。删除了对 A-10 两小时内可用的高压液氧推车的要求。15. 第 9 章:删除了对拖曳 F-35 的一组 6 根光棒的要求。
尽管从未尝试过,但可以评估,同样的技术可以用于执行一些初步的火星载人任务[1, 2]。众所周知,要真正探索和殖民最近的天体,需要开发广泛的技术[3]——开发原地资源的技术、保护宇航员免受辐射的技术、在目的地星球上制造工厂的技术等——但需要直接与推进相关的新技术。特别是,必须使用核能而不是化学能来推动航天器。基于核裂变反应的核热推进和核电推进(NTP 和 NEP)两种替代方案都得到了详细研究,前者已经进行了台架测试,结果非常令人满意。 NTP 和 NEP 可以减少旅行时间(从而减少宇航员受到的宇宙辐射),同时降低低地球轨道初始质量 (IMLEO),从而使星际任务更加经济实惠,从而提高人类执行火星及更远星球任务的机会。NASA 设计参考架构 5 (DRA5) [3, 4] 报告了 NTP 和载人火星任务化学方法之间的有趣比较。此外,NEP 还可以显著改善化学推进,而上述两种核方法之间的选择主要取决于政治决策,即哪种技术可以发展到足够的技术就绪水平。上述两种核方法均基于裂变核反应 [5]。轻质结构和薄膜太阳能电池方面的最新进展使得人们可以考虑将太阳能电力推进 (SEP) 用于载人行星任务,尤其是首次载人火星任务。这是一种“过渡”解决方案,用于提高行星际航天器的性能,使其性能高于化学推进,同时等待 NTP 或 NEP 技术可用。通过将 SEP 的性能与化学推进和 NTP 的性能进行比较,IMLEO 方面的优势显而易见,而就 NEP 而言,它们仅取决于发电机的比重 α,短期内这对太阳能电池阵列比对核发电机更有利。从长远来看,后者会好得多,但开发 SEP 意味着为载人飞行任务开发高功率电推进器,以便在轻型核发电机可用时它们已准备就绪。无论如何,毫无疑问,要成为真正的太空文明,我们必须开发基于核聚变的火箭发动机 [6, 7]。使用聚变能进行航天器推进的想法由来已久 [8]。对于聚变推进,有两种替代方案:类似于 NTP 和聚变 NEP。在过去的 20 年里,许多研究都致力于核聚变发电的总体发展,尤其是核聚变火箭的发展。核聚变 NEP 需要开发轻型核聚变反应堆,而这在今天看来似乎是一项艰巨的任务。此外,这里的重点仍然只是发电机的比重 α,而核聚变发电机的 α 值要比裂变发电机更好还需要很多年 [9],更不用说今天还没有出现过即使 α 值很高的核聚变发电机。在核聚变 NEP 中,α 值越低,比冲的最佳值就越高,因此即使有了轻型发电机,也需要做大量工作来改进电推进器。革命性的直接聚变驱动器 (DFD) 是一种核聚变发动机,其概念基于普林斯顿场反转配置反应堆,该反应堆无需经过中间的发电步骤即可从聚变中产生推力 [10]。该发动机的开发与普林斯顿等离子体物理实验室正在进行的聚变研究有关。DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量以及低辐射航天器推进系统。最简单的聚变驱动器类型是使用小型不受控制的热核爆炸来推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,而 D-3He 直接聚变推进器似乎是可以在中期内实现太阳系殖民的推进器。虽然与 DFD 相关的大多数研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速前往火星和小行星带的任务。结果表明,核聚变推进是开启太阳系殖民和建立太阳系经济的有利技术。本文的结构如下:在第二部分中,我们描述了推进器及其主要特性。第三部分专门考虑了地球 - 火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分讨论了前往 16 Phyche 小行星的任务,最后是结论要使聚变发电机的 α 值优于裂变发电机还需要很多年 [9],更何况目前还没有可用的聚变发电机,哪怕它的 α 值非常高。在聚变 NEP 中,α 值越低,比冲的最优值就越高,所以即使有了轻型发电机,也需要做大量工作来改进电力推进器。革命性的直接聚变驱动器 (DFD) 是一种核聚变发动机,其概念基于普林斯顿场反转配置反应堆,该反应堆无需经过中间的发电步骤即可从聚变中产生推力 [10]。该发动机的研发与普林斯顿等离子体物理实验室正在进行的聚变研究有关。 DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量,以及低辐射航天器推进系统。最简单的核聚变驱动类型是使用小型不受控制的热核爆炸推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,D-3He 直接聚变推进器似乎是可以在中期内殖民太阳系的推进器。虽然大多数与 DFD 相关的研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速登陆火星和小行星带的任务。结果是,核聚变推进是启动太阳系殖民和建立太阳系经济的使能技术。本文的结构如下:第二部分描述了推进器及其主要特性。第三部分考虑了地球-火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分考虑了前往 16 Phyche 小行星的任务,最后是结论要使聚变发电机的 α 值优于裂变发电机还需要很多年 [9],更何况目前还没有可用的聚变发电机,哪怕它的 α 值非常高。在聚变 NEP 中,α 值越低,比冲的最优值就越高,所以即使有了轻型发电机,也需要做大量工作来改进电力推进器。革命性的直接聚变驱动器 (DFD) 是一种核聚变发动机,其概念基于普林斯顿场反转配置反应堆,该反应堆无需经过中间的发电步骤即可从聚变中产生推力 [10]。该发动机的研发与普林斯顿等离子体物理实验室正在进行的聚变研究有关。 DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量,以及低辐射航天器推进系统。最简单的核聚变驱动类型是使用小型不受控制的热核爆炸推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,D-3He 直接聚变推进器似乎是可以在中期内殖民太阳系的推进器。虽然大多数与 DFD 相关的研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速登陆火星和小行星带的任务。结果是,核聚变推进是启动太阳系殖民和建立太阳系经济的使能技术。本文的结构如下:第二部分描述了推进器及其主要特性。第三部分考虑了地球-火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分考虑了前往 16 Phyche 小行星的任务,最后是结论DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量,以及低辐射航天器推进系统。最简单的核聚变驱动类型是使用小型不受控制的热核爆炸推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,D-3He 直接聚变推进器似乎是可以在中期内殖民太阳系的推进器。虽然大多数与 DFD 相关的研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速登陆火星和小行星带的任务。结果是,核聚变推进是启动太阳系殖民和建立太阳系经济的使能技术。本文的结构如下:第二部分描述了推进器及其主要特性。第三部分考虑了地球-火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分考虑了前往 16 Phyche 小行星的任务,最后是结论DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量,以及低辐射航天器推进系统。最简单的核聚变驱动类型是使用小型不受控制的热核爆炸推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,D-3He 直接聚变推进器似乎是可以在中期内殖民太阳系的推进器。虽然大多数与 DFD 相关的研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速登陆火星和小行星带的任务。结果是,核聚变推进是启动太阳系殖民和建立太阳系经济的使能技术。本文的结构如下:第二部分描述了推进器及其主要特性。第三部分考虑了地球-火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分考虑了前往 16 Phyche 小行星的任务,最后是结论