“普通”或“ True”芋头(Colocasia esculenta)是一种草本植物,地下茎肿胀。它是最古老的农作物之一,它仍然是太平洋,东南亚,西非,西非和加勒比海的相对肥沃和高降落环境中可持续生计的关键组成部分,在那里它具有特殊的文化,饮食和经济重要性。在全球范围内,芋头在主食作物中排名第十四,在大约200万公顷土地上全球生产了900万吨。在太平洋特别重要的是,它被认为是每餐的重要组成部分。Corm-烘烤,烤或煮沸 - 叶子被吃掉,后者是维生素,尤其是叶酸的重要来源。除了其在饮食中的重要性外,芋头的种植还紧密地融入了社会和文化生活中。它在正式场合被用作礼物,并为种植者的身份做出了强烈的贡献。18
简介 由于当今人工智能 (AI) 领域的范围非常广泛,入门级 AI 课程通常包括各种主题和技术。 因此,AI 课程可能会让学生觉得内容不连贯,他们可能很难理解不同 AI 主题之间的关系。 我们发现,布置一系列紧密集成的编程项目可以为学生提供一个解决多种不同类型 AI 问题的通用平台,从而使我们的 AI 课程更加统一。 在本文中,我们描述了一系列使用 Pac-Man 作为问题解决环境的项目,用于教授状态空间搜索、对抗搜索、马尔可夫决策过程、强化学习和概率跟踪。 我们选择 Pac-Man 有几个原因。 首先,它玩起来和看起来都很有趣,因为它激发了学生对电子游戏和复古流行文化的热情。 其次,我们寻找一个可以支持确定性、随机性、部分知情和对抗性问题设置的领域。最后,我们希望环境既直观又丰富。Pac-Man 直观的意思是它由在网格上移动的物体组成,学生可以轻松地将这种设置映射到搜索问题和马尔可夫决策过程的一般定义上。Pac-Man 丰富之处在于它会产生非常具有挑战性的 AI 问题;用尽可能少的步骤吃掉所有的食物点是一个非平面旅行商问题。1
心理学 110 2006 年秋季 关于意识的各种问题 1. 什么是意识?花几分钟时间思考一下意识的定义特征或要求是什么。 (在回答下一个问题之前回答这个问题会更有趣。如果您改变主意了,可以回来回答——但是在回答下一个问题之前,试着想出一些答案。) 2. 我记得我 2 岁左右之前的事情很少。那段时间我有意识吗?我怎么知道的? 3. 狗有意识吗?你为什么这么认为? 4. 问题 3 中假设的狗身上的跳蚤有意识吗?跳蚤的行为与你对前面几个问题的回答相比如何? 5. 大多数花都向着光生长。有些甚至会移动并“吃掉”动物(例如捕蝇草)。它们有意识吗? 6. 不久前,一台计算机在国际象棋中击败了加里卡斯帕罗夫(现任世界冠军)。其他计算机可以学习、“观察”和模拟其他人类行为。这些计算机中有具有意识的吗?如果没有,计算机将来有可能具有意识吗? 7. 本讲义的背面列出了关于意识的三种不同观点。请一名小组成员代表每种观点(如果您不这么认为也没关系)进行小组讨论。尝试就哪种观点最有说服力达成一致。写下来并说明您认为这是最佳选择的原因。 8. 举一些“无意识”心理过程的例子。 9. 无意识过程会影响行为吗?请举出您能想到的任何例子。 10. 感知需要意识吗?潜意识感知存在吗?
在后院的番茄园里,我把事情安排得简单而不政治化:口袋里装着番茄胶带,干净的剪刀用来修剪根茎,一把锄头,几根旧竹竿用来帮助黄瓜藤回到它们应该在的棚架上。棚架是黄瓜生长的最佳方式。你可以看到黄瓜,它们很容易采摘。而且它们不会藏在地上的叶子下面,在那里被遗忘的种子会结籽并压死藤蔓。西红柿?把它们关在笼子里或用木桩固定。洋葱排成一排。还有罗勒。我只需要找到一棵凤尾鱼树——谁不喜欢番茄洋葱沙拉里的凤尾鱼呢?早上我去的院子里,鸟儿在歌唱,但有一件事我听不到:政治。西红柿不擅长表现美德。洋葱不会抱怨仇恨邮件。它们不会抱怨罗勒说的话。黄瓜呢?它们按照指令行事。它们不会聚众闹事,要求最高法院无视法律——这样他们就能得到想要的东西——然后把花园变成一片混乱的杂草丛。我不会容忍这种行为。我是这里的首席大法官。它们得到的只是水、肥料、几句鼓励和关爱。但法律就是法律。在法律的最后,有一个神圣的条款允许我吃掉它们。所以它们等着我,早上戴着软帽的男人。几周前,我发现了一株野番茄,让它活了下来,难道我不够仁慈吗?它一定是从一颗掉落的种子中发芽的。一位同事的父亲是农民,去年他给了我一株他的传家宝番茄植株。我把它种在前排。野番茄可能就是其中之一。与此同时,神犬宙斯把兔子赶走了。今年的兔子大军规模庞大,肉多,而且特别愚蠢。有一只特别愚蠢的兔子开始在里面挖窝
• 减少压力——压力会导致梭菌病和巴氏杆菌病。压力可能由聚集、处理、施用产品或药物、混合群体、移动、天气突然变化、担心狗等引起。 • 营养充足——动物应保持良好的身体状况,但不能肥胖。营养突然变化会导致患病,因此应逐步进行任何变化。 • 避免过去绵羊曾患过梭菌病或巴氏杆菌病的田地/环境——一些梭菌细菌生活在土壤中,似乎与某些田地更相关。被扰动的土壤会增加风险,因此避免在田地中进行地基工程等。秋季将绵羊转移到甜菜或其他饲料作物上也会增加患病风险。 • 确保动物健康——确保它们没有蠕虫,跛行得到控制,在有风险的地方控制吸虫,并且它们没有患有任何其他可能降低其免疫力的疾病(例如 MV、Johnes、CLA、Orf、OPA)。• 良好的卫生条件——在产羔时,所有设备和人员都应一丝不苟地清洁,羔羊肚脐必须浸湿,标记、断尾和阉割必须按照最高标准进行。• 良好的初乳管理——羔羊在出生后的前 24 小时内必须接受 200ml/kg 的初乳,并且在出生后的 2-4 小时内必须喂食 200ml。• 管理环境——如果动物在室内;干净的垫料,定期更换,充足干净的淡水,充足的营养且易于获取,不拥挤,通风良好,脚下干燥。如果羊在室外;确保围栏符合良好标准,并且草不会被吃掉,只剩下裸露的土壤 - 如果需要,提供补充营养。 • 管理微量元素 - 可以进行血液测试以确定缺陷并提供补充剂。
澳大利亚松木麻黄 Casuarina equisetifolia 是一种生长迅速的物种,它们在受干扰的地区定居,形成密集的林分,生物多样性较低。它在佛罗里达、南非、巴西和加勒比地区具有入侵性,影响当地的动植物和土壤。褐家鼠 Rattus norvegicus 是一种全球臭名昭著的入侵外来物种。褐家鼠对包括海鸟在内的当地野生动物造成不利影响,但也对人类造成滋扰,它们以种子和储存的食物为食,还会破坏电线。作为昆虫害虫的生物防治剂引入的海蟾蜍 Rhinella marina 本身也成为了害虫,以陆生动物为食并与当地两栖动物竞争。它们的有毒分泌物会导致家畜和野生动物患病和死亡。吞食卵或成虫会导致人类死亡。火蚁 Solenopsis invicta 原产于南美洲。它们的刺痛感很痛,会对野生动物和人类造成不利影响。它们迅速蔓延,形成大型群落,几乎可以吃掉任何东西。它们的刺可以让它们占领食物来源并避免竞争。火蚁现在是美国南部、加勒比地区以及澳大利亚和亚洲部分地区的一个主要问题。热带花蜱 Amblyomma variegatum 起源于非洲,可以给家养动物和人类传播疾病。它携带一种引起心水病的微生物,会导致皮肤问题、体重减轻甚至死亡。农民应该警惕这种蜱虫,并采取措施保护他们的动物。野生罗望子 Leucaena leucocephala 是一种原产于墨西哥的小乔木,由于它对受干扰区域的积极殖民化并对次生植被造成严重破坏,在许多国家被视为入侵物种。
目标导向的含义和起源:动态系统的视角 FRANCIS HEYLIGHEN 布鲁塞尔自由大学 Leo Apostel 中心,Pleinlaan 2, 1050 布鲁塞尔,比利时 本文试图阐明目标导向的概念,该概念常常被误解为与标准因果机制不一致。我们首先注意到,目标导向并不预设任何神秘的力量,例如智能设计、活力论、有意识的意图或反向因果关系。然后,我们回顾了通过更具操作性的特征来定义目标导向的尝试:等效性、可塑性、持久性、协同作用和负反馈。我们表明,所有这些特征都可以通过将目标解释为动态系统的远离平衡的吸引子来解释。这意味着,只要系统保持在同一吸引域内,使系统偏离其目标导向轨迹的扰动就会自动得到补偿——至少是这样。我们认为,具备必要的恢复力的吸引子和吸引域往往会在复杂的反应网络中自组织,从而产生自我维持的“组织”。这些可以被看作是第一个目标导向系统的抽象模型,因此也是生命起源的抽象模型。 其他关键词:等效性 - 可塑性 - 持久性 - 协同作用 - 负反馈 - 吸引子 - 吸引域 - 恢复力 - 自我维持 - 生命起源。 _____________________________________________________________________ 引言 关于目的或目标的概念是否适合于科学理论,一直存在着争议(Deacon & Sherman,2007)。科学的标准本体论是因果论:它假设系统的当前行为完全由过去的原因决定,包括系统先前的状态以及作用于系统状态的任何力量或输入。因此,未来的目标似乎没有空间影响当前的行为。此外,将目标导向应用于生物系统已经声名狼藉,因为它与许多与我们目前对生命的理解不相容的解释有关,包括造物主强加的目的、智能设计、神秘的“生命力”,以及目标导向行为需要有意识的意图的假设。然而,在实践中,科学家和普通人都广泛使用目标导向的概念,因为它为常见现象提供了一个简单而有用的解释。如果你看到一个人在厨房里准备食材,那么你可以放心地假设他的目的是准备一顿饭。如果猎豹追赶瞪羚,它的目标显然是杀死并吃掉那只瞪羚。猎豹在狩猎过程中采取的所有动作,例如加速、跳到瞪羚背上或咬住瞪羚的喉咙,可以这样理解:假设它们针对的是
推荐引用。chan s-y&lau WL(2024)生物多样性记录:蜗牛的人口Tarebia Granifera,许多壳有变形壳。新加坡的自然,17:e2024018。DOI: 10.26107/NIS-2024-0018 ________________________________________________________________________________________________ Subjects: Quilted melania, Tarebia granifera (Mollusca: Gastropoda: Thiaridae).标识的主题:Chan Sow-Yan和Lau Wing Lup。位置,日期和时间:邦戈尔公园新加坡岛; 2023年10月6日;大约1007小时。栖息地:城市公园内的淡水池塘(图1),浅水和相对清澈的水。观察者:Lau Wing Lup。观察:在沿岸的浅水中观察到许多实例实例。13个标本(外壳高度17至25毫米)被随机挑选并检查(图。2)。所有的壳都表现出不同程度的侵蚀。一个例子在壳内唇上具有类似珍珠的钙质生长,以及嵌入在其地幔中的大约1.5 mm直径的松散,圆形,光滑和橙色的珍珠(图3)。其他活人表现出外壳变形,例如1)嘴唇不规则形状或缝隙(图10),2)深层通道或带有圆形孔的缝合线(图9),3)颜色模式的破坏(图6),4)波浪标记(图。3&4),5)部分打开脐带(图7),6)弯曲的尖刺(图4),7)相对于尖顶,膨胀的身体螺纹(图8)和8)标量表(未紧密盘绕)最后一个螺纹(图7)。标本被发现具有粉红色的脚(图11),这是非典型的,因为该物种通常具有灰色,黄色和黑色的颜料(Brandt,1974)。壳没有骨膜的壳往往是棕色或绿色黄色的较浅阴影,某些标本的螺纹上存在斑驳的图案。备注:据信塔雷比亚·格兰尼弗拉(Tarebia Granifera)原产于南亚和西太平洋的一些岛屿。它在非洲,地中海地区和中东以及美洲的热带地区已广泛侵入性。传播归因于水族馆的贸易,甚至归因于鸟类(Yin等,2022),它们在其他地方吃掉并在其他地方(Appleton等,2009)。它是Chan(1996)作为Melanoides Granifera首次在新加坡记录的。塔雷比亚花格兰菲拉(Tarebia Granifera)的人口,大部分在外壳上表现出异常的人似乎是不寻常的,因此很有趣。这些可能是由环境或遗传因素引起的,但是这里涉及哪些因素不能由一般观察结果确定。在非洲的其他地方,Appleton等。(2009)记录了2006年7月从夸祖鲁 - 纳塔尔省NSeleni河收集的749个个体(样本0.3%)的两个畸形的Tarebia Granifera标本。他们的身体螺纹相对于尖顶异常膨胀。与此处所示的标本相比,它们也更小(外壳高度10.9和15.4毫米)。Zoologische Mededelingen,83:525–536。引用的文献:Appleton CC,福布斯AT&demetriades NT(2009)在南非,入侵性淡水蜗牛Tarebia Granifera(Lamarck,1822年)的发生,繁殖和潜在影响(Astropoda:Thiaridae)在南非。Brandt Ram(1974)泰国的非海洋水生软体动物。 Archiv Fur Molluskenkunde,105:1-423。 Chan Sy(1996)新加坡的一些淡水腹足类动物。 海洋和岸,184-187。 Yin N, Zhao S, Huang X-C, Ouyang S & Wu X-P (2022) Complete mitochondrial genome of the freshwater snail Tarebia granifera (Lamarck, 1816) (Gastropoda: Cerithioidea: Thiaridae), Mitochondrial DNA Part B, 7:1, 259– 261.Brandt Ram(1974)泰国的非海洋水生软体动物。Archiv Fur Molluskenkunde,105:1-423。Chan Sy(1996)新加坡的一些淡水腹足类动物。 海洋和岸,184-187。 Yin N, Zhao S, Huang X-C, Ouyang S & Wu X-P (2022) Complete mitochondrial genome of the freshwater snail Tarebia granifera (Lamarck, 1816) (Gastropoda: Cerithioidea: Thiaridae), Mitochondrial DNA Part B, 7:1, 259– 261.Chan Sy(1996)新加坡的一些淡水腹足类动物。海洋和岸,184-187。 Yin N, Zhao S, Huang X-C, Ouyang S & Wu X-P (2022) Complete mitochondrial genome of the freshwater snail Tarebia granifera (Lamarck, 1816) (Gastropoda: Cerithioidea: Thiaridae), Mitochondrial DNA Part B, 7:1, 259– 261.海洋和岸,184-187。Yin N, Zhao S, Huang X-C, Ouyang S & Wu X-P (2022) Complete mitochondrial genome of the freshwater snail Tarebia granifera (Lamarck, 1816) (Gastropoda: Cerithioidea: Thiaridae), Mitochondrial DNA Part B, 7:1, 259– 261.