随着温度的降低,旋转sublattice冻结的倾向,尤其是在固定中心的缺陷和/或无序周围。例如,在YBMGGAO 4的三角形拉力中,非磁离子Mg和GA之间存在位点障碍会诱导自旋玻璃行为[2]。然而,混乱并不总是对QSL状态有害。对pyrochlore氧化物[3,4]和1 T -TAS 2 [5]的研究表明,淬灭的疾病没有竞争,而是与挫败感诱发强量子逆转的合作,并可能引起新兴的旋转疾病,导致无间隙激发负责。从实验的角度来看,QSL状态不会打破任何对称性,从而使使用单个技术识别识别[6]。非弹性中子散射的作用
微流体学优化实验程序,但通常需要外部泵才能精确,稳定和低流速。这些程序通常需要进行长时间实验的延长,连续操作。我们引入了双含量连续泵送机理(DSCPM),这是具有输入多路复用能力的微流体应用的低成本,精确且连续的泵。具有3D打印的外壳和标准组件,DSCPM易于制造和访问。DSCPM以每分钟的流量为单分钟,使用流体桥的整流,将注射泵的精度与连续输注相结合。我们验证了微流体“细胞陷阱”中的层流流,而不会破坏微生物的生长。comsol模拟确认了安全的剪切应力水平。我们还开发并测试了流体多路复用器,以获得更大的模块化和自动化。解决当前的泵限制,例如不连续性和高成本,DSCPM可以增强实验能力并提高效率和精度,同时增加许多领域的硬件自动化的可访问性。
对于具有各向异性特性的设备,必须使用定向孔的微观图形材料。晶体和多孔金属有机框架(MOF)是理想的材料,因为它们的化学和结构性突变性可以精确调整功能性能,用于从微电子到光子学的应用。在此,设计了一个可模式的莫弗胶:通过在X射线暴露下使用光掩膜,MOFFILM在辐照区域分解,在未暴露的区域中保持完整。MOFFILM同时用作抗药性和功能性多孔材料。虽然对齐的Cu(OH)2纳米质体的异质增长用于沉积定向的Moffimfms,但通过将溴化二羧酸酯配体(BR 2 BDC)整合到基于铜的MOF CU 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 LABCO(DABCO(DABCO)中,可以实现对辐射的敏感性(dabco = 1 ockco = 1,4-diazabice; BDC/BR 2 BDC)。 用激光辐射时的石版样品充当辐射时的不同光栅,从而确定了扩展的MOF微图案的质量。 此外,定向的MOF模式通过荧光染料功能化。 结果通过旋转激光激发的极化角,显示了MOF中染料的比对。 通过控制对光的功能响应,该MOF模式协议可用于光子设备的光学组件的微分化。虽然对齐的Cu(OH)2纳米质体的异质增长用于沉积定向的Moffimfms,但通过将溴化二羧酸酯配体(BR 2 BDC)整合到基于铜的MOF CU 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 LABCO(DABCO(DABCO)中,可以实现对辐射的敏感性(dabco = 1 ockco = 1,4-diazabice; BDC/BR 2 BDC)。用激光辐射时的石版样品充当辐射时的不同光栅,从而确定了扩展的MOF微图案的质量。此外,定向的MOF模式通过荧光染料功能化。通过旋转激光激发的极化角,显示了MOF中染料的比对。通过控制对光的功能响应,该MOF模式协议可用于光子设备的光学组件的微分化。
高纵横比金属纳米结构通常用于广泛的应用,例如电子计算结构和传感。然而,这些结构中的自热和高温对现代电子设备的可靠性和时钟频率都造成了重大瓶颈。任何显著的能源效率和速度进步都需要纳米结构金属中基本的和可调的热传输机制。在这项工作中,时域热反射用于揭示外延生长的金属 Ir(001) 中介于 Al 和 MgO(001) 之间的跨平面准弹道传输。对于 25.5–133.0 nm 薄膜,热导率范围分别约为 65(96 平面内)至 119(122 平面内)W m − 1 K − 1。此外,外延生长所提供的低缺陷被怀疑可以观察到具有传统电子介导热传输的 20 nm 以下金属中的电子-声子耦合效应。通过结合电热测量和现象学建模,揭示了不同厚度的三种跨平面热传导模式之间的转变及其相互作用:电子主导、声子主导和电子-声子能量转换主导。结果证实了纳米结构金属中未探索的热传输模式,其见解可用于为大量现代微电子设备和传感结构开发电热解决方案。
广泛的纳米光子应用依赖于极化相关的等离子体共振,这通常需要具有各向异性形状的金属纳米结构。这项工作通过破坏材料介电常数的对称性,证明了极化相关的等离子体共振。研究表明,导电聚合物的分子排列可以产生具有极化相关等离子体频率和相应的平面双曲介电常数区域的材料。这一结果不仅仅是基于各向异性电荷迁移率的预期结果,还意味着电荷载体的有效质量在聚合物排列时也变得各向异性。这一独特特征用于展示圆对称纳米天线,其提供与排列方向平行和垂直的不同等离子体共振。纳米天线可通过聚合物的氧化还原状态进一步调节。重要的是,聚合物排列可以使等离子体波长和共振蓝移几百纳米,形成一种新方法,以实现可见光氧化还原可调导电聚合物纳米天线的最终目标。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
β -氧化镓(β -Ga 2 O 3 )的带隙约为4.9 eV [ 1 ],作为一种新兴的超宽带隙半导体,近年来得到了广泛的研究。由于其具有成熟的块体材料制备、优异的Baliga 品质因数和高电子迁移率等优点[ 2 ],β -Ga 2 O 3 被认为是一种很有前途的日盲紫外(UV)光电探测器、气体传感器、紫外透明导体和大功率电子器件的候选材料[ 3 ,4 ]。虽然块体β -Ga 2 O 3 是外延生长高质量β -Ga 2 O 3 薄膜的理想衬底,但其昂贵的成本和较差的热导率仍然阻碍了同质外延的商业化。因此,在低成本、大尺寸衬底上异质外延β -Ga 2 O 3 薄膜仍然具有重要意义。
摘要。我们证明了整个欧几里得空间上(各向异性的)舒宾仪的定量光谱不平等,因此,从相关的光谱子空间中的功能与有限的能量间隔相关的函数将其在整个空间上与合适子集的L 2-纳米在整个空间上的l 2-相关。我们估计值的一个特定特征是,将这些L 2 -norms相关的常数在整个空间的相应子集的几何参数中非常明确,这可能会在实质性上稀疏,甚至可能具有有限的度量。这扩展了J. Martin最近获得的结果,在谐波振荡器的特殊情况下,A。Dicke,I。Veselić和第二作者获得了结果。我们将结果应用于相关的抛物线方程的无控制性,以及与作用于R d×T d的(变性)Baouendi-Grushin算子相关的结果。
摘要最近,COVID-19大流行对世界各地的个人和社会产生了极大的影响。这项研究旨在描述瑞典中学(10-12岁)学生对细菌和病毒的理解,从而说明了大流行在学校和社会中的影响。数据是通过半结构化的各个视图和要求学生绘制图像的。使用了访谈成绩单的主题编码和学生注释图纸的内容分析。图纸上微生物的形态通常是“电晕”的,具有圆形和突出的部分。病毒被认为比细菌大,但有时也相似。细菌和病毒之间的相互关系用上等微生物表达。学生将微生物像细胞一样,从不将它们描绘成动物或具有拟人化特征。病毒被认为比细菌引起更严重的疾病。学生很少将特定病毒束缚在特定的传染病上,并经常将(病毒和疾病)称为“电晕”。然而,当它们确实建立连接时,病毒被认为会引起流感和covid-19,细菌会引起感冒和鼠疫。通常,这些结果表明,病毒在COVID-19的后果中在小学生的脑海中获得了微型iSM的更为明显的位置。
摘要 高熵 (HE) 超高温陶瓷有机会为未来的应用铺平道路,推动能源转换和极端环境屏蔽领域的技术优势。其中,HE 二硼化物因其固有的各向异性层状结构和耐受超高温的能力而脱颖而出。在此,我们采用原位高分辨率同步加速器衍射对大量多组分组合物进行研究,其中包含四到七种过渡金属,目的是了解不同组分或合成过程后的热晶格膨胀。结果,我们能够根据金属的组合将平均热膨胀 (TE) 从 1.3 × 10 − 6 控制到 6.9 × 10 − 6 K − 1,平面内与平面外 TE 比的变化范围为 1.5 到 2.8。