位点(六边形 h 或准立方 k)。Si(0) 表示不与 NC 原子相邻的 Si 原子数;而 Si(1) 和 Si(2) 分别表示与一个和两个 NC 原子相邻的 Si 原子数。
摘要:具有层状晶体结构和高平面各向异性的材料(例如黑磷)具有独特的性能,因此有望应用于电子和光子器件。最近,GeS 2 和 GeSe 2 的层状结构因其高平面光学各向异性和宽带隙而被用于短波长区域的高性能偏振敏感光电检测。高度复杂、低对称(单斜)晶体结构是高平面光学各向异性的起源,但相应纳米结构的结构性质仍有待充分了解。在这里,我们展示了单斜 GeS 2 纳米结构的原子级表征,并通过 Cs 校正扫描透射电子显微镜量化了实空间中亚埃级的平面结构各向异性。我们通过密度泛函理论 (DFT) 计算和基于轨道的键合分析,阐明了这种高平面内各向异性的起源,即 GeS 2 单层中 [GeS 4 ] 四面体的有序和无序排列。我们还展示了单层 GeS 2 中的高平面内机械、电子和光学各向异性,并设想了单轴应变下的相变,可能用于非易失性存储器应用。关键词:二硫化锗、复合二维材料、亚埃成像、键合机制、平面内各向异性 T
通过定向冰模板法制备了基于具有各向异性结构的纤维素纳米晶体 (CNC) 和多壁碳纳米管 (MWCNT) 的轻质且机械强度高的混合泡沫。各向异性混合 CNC-MWCNT 泡沫表现出高度各向异性的热导率和方向相关的电磁干扰 (EMI) 屏蔽性,对于含有 22 wt% MWCNT 的混合泡沫,在 8 到 12 GHz 之间最大的 EMI 屏蔽效率 (EMI-SE) 为 41–48 dB。EMI-SE 主要由吸收 (SE A ) 决定,这对于微波吸收器应用非常重要。低径向热导率的建模强调了声子散射在异质 CNC-MWCNT 界面处的重要性,而轴向热导率主要由沿取向的棒状颗粒的固体传导决定。轻质 CNC-MWCNT 泡沫结合了各向异性热导率和 EMI 屏蔽效率,这种特性十分独特,可用于定向热传输和 EMI 屏蔽。
我们已经研究了垂直磁性共振(FMR)辅助自旋转移扭矩(STT)垂直MTJ(P-MTJ)的辅助旋转转移扭矩(STT)切换,并使用微磁模拟使用包括热噪声效应的微磁模拟使用不均匀性。具有适当的频率激发,锯可以在磁刻录材料中诱导铁磁共振,并且磁化强度可以在圆锥体中进攻,从垂直方向高挠度。随着通过侧向各向异性变化以及室温热噪声掺入不均匀性的情况下,不同增长的磁化进攻可能显着不合同。有趣的是,即使在不同各向异性的晶粒之间,不同晶粒的进动物也处于相位状态。然而,由于声感应的FMR引起的高平均挠度角可以通过显着降低STT电流来补充STT开关。即使施加的应力诱导的各向异性变化远低于总各向异性屏障。这项工作表明,锯诱导的FMR辅助开关可以提高能源效率,同时可扩展到非常小的尺寸,这对于STT-RAM在技术上很重要,并阐明了这种范式在具有热噪声和材料不显着性的现实情况下这种范式在现实情况下的潜在鲁棒性的物理机制。
目的。太阳轨道器 (SolO) 于 2020 年 2 月 9 日发射,使我们能够研究内日球层湍流的性质。我们使用几乎不可压缩磁流体动力学 (NI MHD) 湍流模型和 SolO 测量研究了内日球层快速和慢速太阳风中各向异性湍流的演变。方法。我们计算了前向和后向传播模式下能量、波动磁能、波动动能、归一化残余能量和归一化交叉螺旋度的二维 (2D) 和平板方差,作为平均太阳风速度和平均磁场 (θ UB ) 之间角度的函数,以及作为日心距离的函数,使用 SolO 测量。我们比较了观测结果和 NI MHD 湍流模型的理论结果与日心距离的关系。结果。结果表明,前向和后向传播模式、磁场涨落和动能涨落的二维能量与平板能量之比随着平均太阳风流与平均磁场之间的夹角从 θ UB = 0 ◦ 增加到大约 θ UB = 90 ◦ 而增加,然后随着 θ UB → 180 ◦ 而减小。我们发现太阳风湍流是太阳中心距离函数中占主导地位的二维分量和少数平板分量的叠加。我们发现理论结果与观测结果在太阳中心距离函数中具有很好的一致性。
Sylvain Cailliez,David Chalet,Philippe Mannessiez。通过非破坏性分析方法同时鉴定锂离子袋细胞的热容量和各向异性热导电性。电源杂志,2022,542,pp.231751。10.1016/j.jpowsour.2022.231751。hal- 03703340
控制薄膜中垂直磁各向异性(PMA),近年来由于其技术重要性而受到了相当大的关注。基于PMA的设备通常涉及重金属(氧化物)/铁磁 - 金属双层,在此,由于界面自旋 - 轨耦合(SOC),磁化的平面内(IP)稳定性被损坏了。在这里我们表明,在v/mgo/fe(001)中,具有竞争的面板内和平面外(OOP)磁各向异性的外延连接,SOC介导的相互作用(Fermagnet(FM)(FM)和超导体(SC)之间的相互作用可增强有效的PMA以下超导管过渡的有效PMA。这会产生部分磁化重新定位,而除了最大的连接外,没有任何应用领域,其中IP各向异性更强大;对于最小的连接,由于IP和OOP各向异性之间的竞争更强,诱导完全OOP转变(H OOP)所需的场所降低。我们的结果表明,在存在超导性和施加的电场的情况下,有效PMA的程度可以由连接横向大小控制。我们还讨论了HOOP场如何受到磁性杂散场与超导涡流之间的相互作用的影响。我们的实验发现,由铁磁体 - 螺旋体相互作用的数值建模,开放途径,可以主动控制新兴无耗散的超导旋转电子产品中的磁各向异性的开放途径。
增材制造金属的机械性能各向异性有几个物理原因。这些原因包括但不限于方向依赖的晶粒和相形态、晶体结构、定向孔隙率/缺陷以及与熔池、分层微观结构相关的异质性。所有这些在大多数增材制造工艺中都很普遍,很难区分它们在机械各向异性中的作用。本综述重点介绍那些试图或合理地隔离其中一个或两个来源的研究,而不是简单地报告机械性能的趋势。这不是一份涵盖所有增材工艺或机械性能的详尽综述;主要评估的是激光粉末床熔合 (LPBF) 金属和拉伸试验结果(模量、屈服强度、极限拉伸强度、伸长率和断裂表面分析)。总之,LPBF 合金的各向异性拉伸性能的主要来源是晶体结构、各向异性微观结构形态、熔合缺陷不足和熔池宏观结构。在各向异性微观结构中,与相和特征(例如晶界 α、沉淀物等)的优先分布相比,拉长的晶粒似乎是次要的。各向异性模量和屈服强度主要由晶体织构引起。晶体塑性模拟支持了这一点。各向异性伸长主要由各向异性微观结构形态、未熔合缺陷和熔池宏观结构引起。支持这一点的证据来自遵循这些特征的断裂表面。熔池宏观结构是最难通过实验从其他各向异性源列表中分离出来的。一组激光工艺参数和合金的发现并不具有指导意义。在将拉伸各向异性的原因与特定来源联系起来之前,必须对上述来源进行表征。需要制定表征和操纵晶体织构、孔隙率、晶粒和相形态以及熔池宏观结构的策略,以更好地理解和控制 AM 金属中的机械各向异性。
术语定义: 均质 异质 各向异性 各向异性 (奥德赛路径) (各向异性 尝试所有路径 => 水晶) (非各向异性 坚持一条路径 => 玻璃) 亚稳态平衡 程度,广泛:V,质量 密集:密度,温度 状态函数 T,P,r,G,H,S,… 第一定律,能量守恒 S dU = S dq + S dw = 0 内部能量,热量,工作 绝热,放热,吸热
光电特性,以太阳能电池为基础的应用,[1,2]发光设备[3,4]和光电探测器。[5-7]在这些应用中,通过真空沉积的合成是一种工业可伸缩,低成本和环保方法,以制造有效的,稳定和耐用的光电设备。[8–11]此外,已经通过不同的途径[6,12-14]实现了OMHP的各向异性纳米结构,例如纳米棒,纳米线或纳米片,可以将模板和化学物质的生长(例如第一次使用)纳入模板和化学构造的模拟结构(15])或凹槽[17,18]在其内部生长OMHP,而第二种是使用溶液合成方法来控制生长,例如表面活性剂或阴离子 - 交换反应等。[12,19]这些半导体各向异性纳米结构的一个关键特征是它们的极化 - 敏感的光电子响应。[15,20–22]尽管我们当前的许多设备都利用极化器来产生偏光光,但存在几个缺点,例如生成的束的强度降低和/或它们在微观和纳米级设备中的集成,从而限制了OptoelectRonic Systems的整体效率。[15,23]