在结核病肆虐的地区,缺乏训练有素的放射科医生来快速处理 CXR 一直是一个挑战,影响及时诊断和患者监测。结核病患者肺部注释图像的缺乏阻碍了将面向数据的算法应用于研究和临床实践的尝试。结核病门户计划数据库 (TBPP,https://TBPortals.niaid.nih.gov) 是一个全球合作项目,整理了大量最危险、难以治愈的耐药结核病 (DR-TB) 患者病例。TBPP 拥有 1,179 例 (83%) 耐药结核病患者病例,是一个独特的集合,非常适合作为深度学习分类器的试验场。截至 2019 年 1 月,TBPP 数据库包含 1,538 张 CXR,其中 346 张(22.5%)由放射科医生注释,104 张(6.7%)由肺科医生注释,剩下 1,088 张(70.7%)没有注释。Qure.ai qXR 人工智能自动 CXR 解释工具在 TBPP 数据库中 346 张放射科医生注释的 CXR 上进行了盲测。Qure.ai qXR 对空腔、结节、胸腔积液、肺门淋巴结肿大的 CXR 预测与人类专家注释成功匹配。此外,我们还测试了 12 个 Qure.ai 分类器,以确定它们是否与治疗成功率相关(治疗医生提供的信息)。发现十个描述符具有重要意义:异常 CXR(p = 0.0005)、胸腔积液(p = 0.048)、结节(p = 0.0004)、肺门淋巴结肿大(p = 0.0038)、空洞(p = 0.0002)、不透明度(p = 0.0006)、肺扩张(p = 0.0074)、实变(p = 0.0004)、结核病指标(p = < .0001)和纤维化(p = < .0001)。我们得出结论,应用全自动 Qure.ai CXR 分析工具可用于快速、准确、统一、大规模的 CXR 注释辅助,因为它即使对于未用于初始训练的 DR-TB 病例也表现良好。在 TBPP 等不同数据集上测试人工智能算法(包括机器学习和深度学习分类器)对于临床采用的医疗数据分析自动助手至关重要。
端到端仪器方案的设计、开发和测试,包括各种类型的传感器选择、信号调理、数据接收、控制和数据处理、仪器子系统测试和仪器数据分析。设计、开发、系统测试控制系统和设备,并监控自动化系统的性能和可靠性。端到端仪器方案的设计、开发和测试,涉及各种类型的传感器选择、信号调节、数据采集、控制和数据处理、仪器子系统测试和仪器数据分析。设计、开发控制系统和设备,运行系统测试并监控自动化系统的性能和可靠性。
支持各种类型的测距和定位:基于飞行时间(ToF)的双向测距(TWR)、到达时间差(TDoA)、3D 到达角(3D AoA)
• 基于规则的数据驱动模型。• 人工智能与数据驱动决策的关系 • 构建数据驱动模型所需的能力 • 使用人工智能解决各种类型数据的问题