电子设备,无论是传感、驱动还是通信形式,都是未来可穿戴设备的重要方面。需要在多个组件之间建立可靠的电气连接,且不能对可穿戴体验产生不利影响。传统导电材料有两个主要缺点。首先,固体金属材料与人体贴合度不佳,会降低运动自由度。其次,柔软且可拉伸的导电橡胶在受到应力或压缩时,电阻会发生剧烈变化。由于导线的体积在拉伸或压缩过程中保持不变,因此导线的横截面积与长度成反比。因此,电阻随长度变化的平方而变化。对于具有刚性填充颗粒的导电橡胶,由于应变引起的导电填充颗粒分离,电阻变化可能更为极端。这增加了设计柔性电路的复杂性。
摘要 - 在垫圈组件中,必须将可变形的垫圈对准并压入狭窄的通道。此任务对于在自动机动器,电器,电子产品和其他产品的制造中密封表面很常见。垫圈组件是一项长摩龙,高精度任务,垫圈必须与通道保持一致,并被完全按下以实现安全的拟合度。为了比较方法,我们提出了4种垫片组装方法:深度模仿学习和三种程序算法的一种政策。我们通过100次物理试验评估了这些方法。的结果表明,二进制+算法在10/10上取得了直接渠道的成功,而基于250个人类遥控示范的学习政策在8/10的试验中取得了成功,并且较慢。可以在https://berkeleyautomation.github.io/robot-gasket/上找到代码,CAD模型,视频和数据。
摘要:随着无人机技术的飞速发展,UAS已经成为军民两用领域不可或缺的重要武器,UAS数量和活动量的增加对UAS飞行员/操作员的需求也随之增加,UAS飞行员/操作员已成为航空业的一个热门职业。本文首先阐述了UAS的分类及其操作特点。然后结合目前美国、英国及我国航空主管部门对无人机驾驶员/操作人员资质的要求,分析了无人机驾驶员/操作人员的一般资质要求和特殊资质要求,包括职业素质、体检要求、心理测评、训练要求、操作经验、配合度等,并结合无人机驾驶员与有人驾驶飞机驾驶员培训的差异,探讨了无人机驾驶员的培训内容和方法,重点探讨了人为因素和生理健康等方面的培训内容和方法,对无人机驾驶员/操作人员的选拔和培训具有指导意义。
提出了一个饲养式(FIT),以最大程度地降低将新的公用事业规模容量在线使用所需的时间,从而删除选择优先竞标者的耗时的过程。该计划将提供一项固定拟合度的不可谈判的20年电力购买协议(PPA),高于Reipppp的溢价为15%,太阳能PV的630 R/MWH和910 R/MWH的风能大于50 MW。溢价旨在吸引该国东北部的开发项目,在该国东北部的载荷因子平均会降低15%的风,并弥补削减措施,以优化电网利用率所需的削减。该程序将最多限于16.8 gw,因为额外的容量将需要确定在现有IRP设置的护栏之外采购新的电力发电能力,或更新IRP,这两者都有很长的交货时间。
腺相关病毒(AAV)是将基因疗法递送到靶器官的重要车辆。因此,控制其靶向是极大的治疗兴趣。通常,在搜索具有理想的对流的AAV病毒的过程中,筛选了突变的衣壳的大量库。但是,在任何一个实验中筛选的衣壳的数量通常远小于搜索的序列空间。因此,一开始将搜索空间限制为那些会产生可行病毒的衣壳将是有用的。在这里,我们介绍了在此过程中设计为助手的机器学习模型的结果。他们预测了氨基酸序列的生产拟合度,用于在可变区域中的AAV Capsid蛋白VP1中携带插入突变的AAV9病毒8。我们演示了模型的性能,并展示了它们如何用作预筛选工具,以构建具有高平均生产适应性和高度多样性的热带主义筛查的衣壳库。
d. Hyatt 等人(参考文献 6)通过对具有不同数量面部毛发(包括胡茬、鬓角和胡须)的志愿者进行定量贴合度测试,研究了面部毛发对半面罩和全面罩呼吸器性能的影响。他们的测试结果表明,面部毛发(例如面部胡茬、胡须和宽鬓角)会干扰呼吸器密封的人,无法期望获得与剃光头的人一样高的呼吸器性能。特定胡须或鬓角对特定人/呼吸器组合的影响程度取决于许多因素,例如毛发的长度、质地和密度,以及对呼吸器密封表面的干扰程度。他们进行了一次有趣的讨论,关于一天的面部毛发的硬毛实际上可能会像叉子一样将呼吸器远离面部。图 1 中的表格以图形方式说明了这一点,显示了面部毛发对呼吸器面罩泄漏的影响。
对于与特定活动领域相关的创新商业模式,本研究重点关注其与所选 IT 的可能契合度、选择的相关性及其提高公司效率的潜力。社会技术系统理论(Leavitt,1965;Kwon and Zmud,1987)将技术与内部社会和外部环境子系统并列为技术子系统的两大支柱之一,它们的平衡必须确保公司的绩效。所以,为了建立一种新的商业模式,使公司高效,应该寻求这些子系统之间,即它们的组成轴之间的平衡。通过对一家纯粹参与公司的研究,在知识服务领域(会计)中实施了定性案例研究方法。我们的理论贡献首先涉及结合商业模式和社会技术方法的文献。当STS理论的五个轴线一致时,商业模式就能给公司带来业绩。此外,重新思考该理论中客户的工作地位似乎很有意义。
● 验证轨道:适用于 TRL 3-5 的初创公司,验证轨道提供了在 EPRI 或 EPRI 成员研究机构运行实验室特性项目的机会,并被考虑加入 Shell GameChanger。在其实验室特性项目中,EPRI 作为第三方独立技术验证者提供支持,用于成本效益分析、系统平衡分析、市场可行性研究和其他分析。Shell GameChanger 提供可能的种子前和种子投资以及其他好处。● 演示轨道:适用于 TRL 5-7 的初创公司,演示轨道提供了许多可能的框架。根据战略契合度,初创公司可能有机会与 EPRI 成员公用事业公司进行商业演示和/或与 Shell 业务线或网络建立商业或开发伙伴关系(例如联合开发、试点机会、Shell Ventures 的投资和许可协议)。
在实践中很难繁殖,因为它们需要以幅度和相项的调制,因此很难繁殖高斯光束。在此,计算了一种新的线性极化的Lorentz - 高斯光束,该束由螺旋隔离膜(LGB-HA)调制,并描述了该梁的两种各种实验生成方法,傅立叶变换方法(FTM)和复杂振幅调制(CAM)方法。与FTM相比,CAM方法只能通过一个反射型型相位液晶空间光调节器同时调节相位和幅度。这两种方法都与数值结果一致。CAM虽然更简单,更有效,并且通过数据比较具有更高程度的符合度。此外,考虑到具有异质分布的复杂Lorentz - 高斯光束中存在一些障碍,还实现了具有不同参数的梁的进化规律性(轴向参数,拓扑电荷和相位因子)。
摘要 近 90% 的人类致病突变是由微小的基因变异引起的,有效纠正这些错误的方法至关重要。进行微小 DNA 改变的一种方法是提供单链寡脱氧核苷酸 (ssODN),该单链寡脱氧核苷酸包含一个改变,并在基因组的目标位点处与靶向双链断裂 (DSB) 相结合。将 ssODN 供体与 CRISPR-Cas9 介导的 DSB 结合是引入微小改变的最简化方法之一。然而,在许多系统中,这种方法效率低下,并且会在基因连接处引入不精确的修复。我们在此报告一种使用 ssODN 和 CRISPR-Cas9 的时空定位来改进基因改变的技术。我们表明,通过将 ssODN 模板与反式激活 RNA (tracrRNA) 融合,我们可以恢复精确的基因改变,并且在体外和体内的整合度和精确度都有所提高。最后,我们表明该技术可用于与其他基因编辑工具(如转录激活因子如效应核酸酶)一起增强基因转换。