变革也意味着新人将加入我们。我们已经从政府实验室聘请了两位资深教员(他们的损失就是我们的收获!),他们将于今年夏天加入我们。拥有杨百翰大学博士学位的 Ryan Kelly 博士来自太平洋西北国家实验室,是极小生物样本(例如单细胞,甚至单个细胞器)质谱分析方面的专家。几年前曾担任诺贝尔奖获得者 Fraser Stoddart 博士后研究员的 Walter Paxton 博士来自桑迪亚国家实验室和洛斯阿拉莫斯国家实验室联合运营的综合纳米技术中心,他将加入我们。他的工作是将离子转运体等生物功能分子放入合成膜中,从而在合成材料中产生逼真的功能。我们很高兴欢迎这两位新教员。
cds薄膜是通过化学沉积在玻璃基材上制备的,以便在薄膜光电接种者中作为缓冲层的潜在用途。使用X射线相分析和拉曼光谱法,确定在最佳技术条件下合成的CD膜在六边形的wurtzite结构中结晶。已经表明,沉积时间会影响合成材料的生长速率,形态和微观结构特征。随着在给定溶液温度下的沉积时间的增加,观察到表面粗糙度的显着降低,伴随着晶体簇和微结构缺陷的大小减少。CD膜的光节间隙为2.53 - 2.57 eV。光致发光光谱中明显的绿色发射带的存在表明CD膜具有高度的结晶度,最小的缺陷密度。
时期激活,14光催化15和Fenton 16技术。在上述治疗系统中,用塑料废物制备的碳质材料的利用可以降低治疗成本并促进这些技术的全尺度。在这项研究中,将矿泉水塑料瓶,塑料饮水杯和塑料酸奶杯子用作制备富含碳的材料(例如石墨烯,碳球形和碳纳米管)的前体。使用能量分散X-射线光谱,X射线差异,傅立叶变换红外光谱和透射电子显微镜,研究了制备材料的化学组成,化学结构,官能团和形态。此外,通过X射线光电子体镜检查和热重分析研究了制备材料的化学状态和热稳定性。此外,使用BET表面积分析仪估算合成材料的表面积。
时期激活,14光催化15和Fenton 16技术。在上述治疗系统中,用塑料废物制备的碳质材料的利用可以降低治疗成本并促进这些技术的全尺度。在这项研究中,将矿泉水塑料瓶,塑料饮水杯和塑料酸奶杯子用作制备富含碳的材料(例如石墨烯,碳球形和碳纳米管)的前体。使用能量分散X-射线光谱,X射线差异,傅立叶变换红外光谱和透射电子显微镜,研究了制备材料的化学组成,化学结构,官能团和形态。此外,通过X射线光电子体镜检查和热重分析研究了制备材料的化学状态和热稳定性。此外,使用BET表面积分析仪估算合成材料的表面积。
[由设计与工程学院(材料科学与工程系)和理学院联合管理] 工程材料在过去对行业的发展起到了关键作用。近年来,材料在影响国家技术进步和经济增长方面发挥了催化作用。世界上最先进的国家在材料技术方面也是最先进的,从合成材料到生物材料,这并非巧合。尖端技术的快速发展,无论是与生命科学相关的生物材料,还是与工程相关的薄膜技术,都依赖于与材料相关的知识的进一步增长。一些材料敏感技术包括生物工程、纳米技术、信息技术和晶圆级封装。为了与世界上大多数领先的经济体和大学保持一致,我们必须创建一个课程网络,引导我们的学生进入工程材料的奇特世界。这个多学科辅修课程的目标如下:
国际环境,能源与健康材料国际会议(IAMEEH-2024)将致力于设计和合成材料的最新进展,并在不同的领域中探索针对不同的SDG的应用程序,以良好的健康和福祉,清洁水,清洁的水和卫生,负担得起的和可持续的城市,可持续的城市,可持续的城市,可持续性的消费,气候和负责任的消费,气候和负责任的消费,气候和供应。本次会议将提供出色的平台,该平台将提供动态的专业人士,专家,来自全国各地的化学和生物学领域的专家,并在基本和应用领域展示了他们的研究,以探索和培养合作,这将为未来的观点提供途径。AMEEH-2024将以国际国家专家的主题演讲/邀请演讲,并为我们的年轻科学家提供会议,以争夺最好的口头和海报演示
功能性合成材料与生物实体的整合已成为一种新的、强大的方法,可用于创建具有前所未有的性能和功能的自适应功能性结构。这种混合结构也称为工程化生物材料 (ELM)。ELM 有可能实现许多人们非常需要的特性,这些特性通常只存在于生物系统中,例如自供电、自修复、响应生物信号和自我维持的能力。受此推动,近年来,研究人员开始探索 ELM 在许多领域的应用,其中,传感和驱动是进展最快的领域。在这篇简短的评论中,我们简要回顾了基于 ELM 的传感器和执行器的重要最新发展,重点介绍了它们的材料和结构设计、新制造技术以及生物相关应用。我们还确定了该领域的当前挑战和未来方向,以帮助这一新兴跨学科领域的未来发展。
自然广泛使用相对带电的聚合物之间的静电键来组装和施加材料,但在合成系统中利用这些相互作用一直在挑战。合成材料与高密度的离子键(例如聚电解质复合物)交联,只有在充满大量水的情况下减弱其电荷相互作用时才能正常起作用。脱水这些材料会产生牢固的库仑粘结,以至于它们变得脆弱,非心形和几乎不可能处理。我们提出了一种策略,可以通过将衰减器间隔物与携带部分的电荷接收到固定的聚合物固体中的静电键强度。这会产生一类多素式材料,其电荷密度为100%,可加工且可延展,而无需水,高度溶剂和防水,并且完全可回收。这些材料是“复合物”,仅使用定制的离子键合嫁给热塑性和热固性的特性。
自然广泛使用相对带电的聚合物之间的静电键来组装和施加材料,但在合成系统中利用这些相互作用一直在挑战。合成材料与高密度的离子键(例如聚电解质复合物)交联,只有在充满大量水的情况下减弱其电荷相互作用时才能正常起作用。脱水这些材料会产生牢固的库仑粘结,以至于它们变得脆弱,非心形和几乎不可能处理。我们提出了一种策略,可以通过将衰减器间隔物与携带部分的电荷接收到固定的聚合物固体中的静电键强度。这会产生一类多素式材料,其电荷密度为100%,可加工且可延展,而无需水,高度溶剂和防水,并且完全可回收。这些材料是“复合物”,仅使用定制的离子键合嫁给热塑性和热固性的特性。
课程目标:本课程分为四个部分,涵盖合成材料和表面原理、生物材料原理、材料和设备的生物性能以及最先进的材料设计。学生必须上课并掌握其中的材料。此外,还指定阅读临床、生命和材料科学文献。鼓励学生寻找其他参考资料来补充指定的阅读材料。对基本原理(大纲的第 1 部分和第 2 部分)进行期中考试。还会进行全面的期末考试。本课程的目的是向学生介绍与生物材料的选择和功能相关的问题。通过课堂讲座和物理和生命科学文献的阅读,学生将获得广泛的知识,了解用于选择生物材料的标准,特别是在材料-组织或材料-溶液界面主导性能的设备中。将讨论用于医学、牙科、组织工程、药物输送和生物技术行业的设备的材料。