临界维度(CD)控制在半导体行业至关重要,并且随着光刻限制不断推动以达到小于10 nm的技术节点而变得更具挑战性。为了确保过程的质量和控制,有必要探索新的计量技术。从这个意义上讲,临界小角度X射线散射(CDSAXS)已被确定为确定具有子纳米准确精度的线光栅的平均形状的潜在候选者。在本文中,我们将CDSAXS结果基于光学关键维度(OCD),临界尺寸扫描电子显微镜(CDSEM)和透射电子显微镜(TEM)测量,以前从制造线的工业计量工具和表征实验室中收集的先前从工业计量工具中收集的测量值。重点放在用于CDSAXS的模型以及如何改进的模型上。我们讨论了所有这些多尺度和多物理技术之间的差异,并质疑我们比较它们的能力。
同步系统最初用于巴拿马运河的控制系统,将闸门和阀杆位置以及水位传输到控制台。由此,海军设计师意识到位置信息可用于海军舰艇的潜力。该传感器的原始名称是 Selsyn,实际上是一个品牌名称。后来将其重新命名为 synchro,作为通用传感器名称。早期的海军应用包括 20 世纪 20 年代首次开发的火控系统的枪支定位。同步器会将当前的枪支位置传输到火控系统,然后将所需位置传回给炮手。早期的定位系统只是移动指示器刻度盘。随着技术的发展,进入 20 世纪 30 年代,人们发明了增强威力的方法,因此,无需移动简单的刻度盘来定位,而是可以直接移动实际的枪支和炮塔。
亚稳态事件在数字电路中很常见,同步器是保护我们免受其致命影响的必需品。最初,读取异步输入(即输入与时钟不同步,因此它可能在采样时准确更改)时需要同步器。现在,由于同一芯片上有多个时钟域,当片上数据跨越时钟域边界时需要同步器。任何触发器都可以轻松变成亚稳态。将其数据输入与时钟的采样沿同时切换,即可获得亚稳态。展示亚稳态的一种常见方法是向数据和时钟输入提供两个频率略有不同的时钟。在每个周期内,两个信号的相对时间都会发生一点变化,最终它们切换得足够接近,从而导致亚稳态。这种巧合反复发生,使得能够使用普通仪器展示亚稳态。理解亚稳态并正确设计同步器以防止它有时是一门艺术。关于故障和坏同步器的故事比比皆是。同步器并不总是能够合成,它们很难验证,而且过去好的东西在未来可能就会变坏。论文、专利和应用说明给出的错误说明太多了,来自信誉良好的来源的库元素和 IP 核可能“在任何速度下都不安全”。本文简要介绍了亚稳态和同步器的理论和实践;侧栏“亚稳态文献资源”提供了一个简短的资源列表,您可以从中了解有关此主题的更多信息。
主锁存器如何进入亚稳态?考虑图 2 左侧的触发器。假设时钟为低,节点 A 为“1”,输入 D 从“0”变为“1”。结果,节点 A 下降,节点 B 上升。当时钟上升时,它会断开节点 A 的输入并关闭 A—B 循环。如果 A 和 B 恰好在其亚稳态水平附近,则它们需要很长时间才能偏离合法数字值,如下所示。事实上,一个定义是,如果触发器的输出变化晚于标称时钟到 Q 传播延迟 (t pCQ ),则触发器一定是亚稳态的。我们可以通过调整时钟和数据的相对时序来模拟这种效果,直到获得所需的结果,如图 3 所示。顺便说一句,触发器的其他时序不当的输入(异步复位、清除,甚至由于时钟门控不良导致的时钟脉冲太短)也可能导致亚稳态。