高能量超快激光器和游离电子激光器的抽象快速进步使实验室中的极端物理条件成为可能,这为研究光与物质之间的相互作用奠定了基础,并探测超快动态过程。高时间分辨率是实现这些大规模设施价值的先决条件。在这里,我们提出了一种新方法,该方法有可能使大型科学设施的各个子系统都能很好地合作,并且通过将平衡的光学跨率(BOC)与近乎文件的干扰素征结合,可以极大地提高计时抖动的测量精度和同步精度。最初,我们将0.8 PS激光脉冲压缩到95 fs,这不仅将测量精度提高了3.6倍,而且还将BOC同步精度从8.3 FS root-Mean-square(RMS)提高到1.12 fs rms。随后,我们通过使用BOC进行预校正和接近实验室的干涉测量技术来成功补偿激光脉冲之间的相位漂移至189 AS RMS。此方法实现了具有AS级准确性的PS级激光器的定时抖动的测量和校正,并具有促进超快动力学检测和泵 - 探针实验的潜力。
GPS 的轨道周期使它们距离地心约 4.2 个地球半径,如图 5 中三脚架的脚所示。航天器 (SV) 时钟的相对论速度使它们相对于地球每天损失约 7.2 百万分之一秒(7.2 微秒)。另一方面,它们的高度(通常称为引力红移)使它们每天增加 45.6 微秒。净收益为每天 38.4 微秒。与系统所需的几纳秒同步精度相比,这种积累是巨大的,因为微秒是纳秒的 1,000 倍。SV 时钟在地球上建造,每天会误差 38.4 微秒,因此当它们在太空中时,它们似乎以正确的速率运行。
多点定位和广域多点定位 (MLAT / WAM) Indra MLAT/WAM 是一种高精度解决方案,适用于跑道监控期间的空中监视和地面监视。该系统由一系列分布式站点组成,这些站点收集从飞机接收到的 SIF / SSR 信号的到达时间差,以确定其 3D 位置。Indra MLAT 传感器是市场上最精确的传感器,同步精度优于 1ns。此外,站点的分布可在地形限制雷达覆盖的区域提供监视,并且是一种可扩展的解决方案,可实现灵活高效的升级。
当前,现代通信和导航系统中的紧急任务之一是提高各种设备之间时间尺度的同步精度[1-9]。这对于在进行地球表面,高层大气层,高速信息的传播和处理的调查过程中获得可靠的结果是必不可少的[7-17]。取决于时间尺度同步所需的准确性,系统中使用了不同的频率标准模型。解决此问题的最佳解决方案是使用量子频率标准(QFS)。在各种导航系统的量子频率标准中,最流行的是rubidium QF,因为与其他类型的QF相比,它们的尺寸较小,成本较低。这些关键优势允许使用由小型rubidium手表组成的rubidium标准,这些手表在移动通信的基站和通信卫星的船件上广泛使用[4,18-21]。这样的系统应该长时间自主工作。因此,用于其中的信息处理,用于各种光学系统[20-26]。