摘要 — 在本文中,我们报告了高迁移率 β -Ga 2 O 3 同质外延薄膜的生长温度,该薄膜的生长温度远低于金属有机气相外延的传统生长温度窗口。在 Fe 掺杂的 (010) 块体衬底上以 600 ◦ C 生长的低温 β -Ga 2 O 3 薄膜表现出卓越的晶体质量,这从测量的非故意掺杂薄膜的室温霍尔迁移率 186 cm 2 /Vs 可以看出。使用 Si 作为掺杂剂实现 N 型掺杂,并研究了 2 × 10 16 - 2 × 10 19 cm −3 范围内的可控掺杂。通过比较二次离子质谱 (SIMS) 中的硅浓度和温度相关霍尔测量中的电子浓度,研究了 Si 的掺入和活化。即使在这种生长温度下,薄膜也表现出高纯度(低 C 和 H 浓度),且补偿受体浓度非常低(2 × 10 15 cm − 3)。此外,在较低温度下生长时,可以观察到突变掺杂分布,正向衰减速度为 ∼ 5nm/dec(与在 810 ◦ C 下生长的薄膜相比,提高了 10 倍)。
本论文的目的是研究使用 ECR(电子回旋共振)氢等离子体技术的低温原位清洗工艺和使用 HF 浸渍法的原位清洗工艺,用于低温硅同质外延生长。在 MS-CVD(多室化学气相沉积)反应器上安装了负载锁室,以降低将污染物引入系统的可能性。选择 ECR 等离子体系统是因为与传统的 RF(射频)系统相比,它可以以良好调节的方式输送更高密度的低能离子。选择氢气是因为氢气质量轻,并且能够与表面污染物发生化学反应。在原位清洗的晶圆顶部沉积外延层,并通过 XTEM(横截面透射电子显微镜)和 RBS(卢瑟福背散射光谱)技术研究外延层和外延层/衬底界面的结构质量。使用 SIMS(二次离子质谱)检测界面处的氧和碳污染物。
β -氧化镓(β -Ga 2 O 3 )的带隙约为4.9 eV [ 1 ],作为一种新兴的超宽带隙半导体,近年来得到了广泛的研究。由于其具有成熟的块体材料制备、优异的Baliga 品质因数和高电子迁移率等优点[ 2 ],β -Ga 2 O 3 被认为是一种很有前途的日盲紫外(UV)光电探测器、气体传感器、紫外透明导体和大功率电子器件的候选材料[ 3 ,4 ]。虽然块体β -Ga 2 O 3 是外延生长高质量β -Ga 2 O 3 薄膜的理想衬底,但其昂贵的成本和较差的热导率仍然阻碍了同质外延的商业化。因此,在低成本、大尺寸衬底上异质外延β -Ga 2 O 3 薄膜仍然具有重要意义。