本研究的主要目的是探索砷对磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(AKT)/核转录因子-κB(NF-κB)信号途径的影响。砷(Naaso 2)的剂量为0、15、30或60 mg/l的雌性小鼠及其幼犬。通过EMSA评估NF-κB的核转运水平。实时RT-PCR用于测量AKT,NF-κB和PI3K mRNA水平。PI3K,P-AKT,抑制剂Kappa B激酶(IKK),P-NF-κB,蛋白激酶A(PKA),抑制剂KAPPA B(IκB)和cAMP反应元件结合蛋白(CREB)的蛋白质表达。结果表明,暴露于60 mg/l NaASO 2可以抑制NF-κB产后日(PND)20和PND 40小鼠的NF-κB水平。砷在PI3K,AKT和NF-κB的转录和翻译水平下调。此外,P-IKK,P-IκB,PKA和P-CREB的蛋白质表达也降低了。总的来说,本研究的结果表明,砷可以下调PI3K/AKT/NF-κB信号传导途径,尤其是在PND 40上,这可能与认知障碍有关。
昆虫的生态成功通常取决于它们与有益的小动物的联系。然而,昆虫的发育涉及反复的蜕皮,这可能会对其微生物群落产生影响。在这里,我们调查了半代谢昆虫的微生物组的影响以及如何影响孕产妇护理是否可以调节这些影响。,我们饲养了有或没有飞蛾的欧洲耳朵少年,并使用16S rRNA metabarcoding分析了鸡蛋核心微生物组的原核分数,最近和在四个发育阶段和由此产生的成年人处于四个发育阶段和旧的蜕皮个体。获得的218个样品表明,在发育过程中,微生物组的分流性质不断变化,并且这些变化与细菌生物标志物有关。令人惊讶的是,这些变化不是在换羽期间发生的,而是在某些发育阶段的开始和结束之间。我们还发现,即使与母亲的最后一次接触是在成年后的两个月之前,也可以使用幼体和成年人的微生物组。总体而言,这些结果为我们对半脂质昆虫中原核微生物组(在)稳定性的理解及其脱离蜕皮的独立性提供了新的见解。更常见的是,他们质疑通过孕产妇护理在这种行为具有兼职的物种中维持家庭生活中微生物组获取的作用。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
ǂ当前地址:微生物学系 - 荷兰尼亚梅根,拉德布德大学,荷兰通讯作者:嗜酸脂@gmail.com摘要Asgard Archaea在复杂的细胞生命的起源中至关重要。Hodarchaeales(Asgardarchaeota类Heimdallachaeia)最近被证明是真核生物的最亲近的亲戚。然而,这些古细菌的有限抽样限制了我们对它们的生态学和进化1-3的理解,包括它们在真核生态中的预期作用。在这里,我们几乎将Asgardarchaeota metagenome组装基因组(MAGS)的数量增加到869,其中包括136个新的Heimdallarchaeia(49 Hodarchaeales)和几个新型谱系。检查全球分布显示hodarcheales主要在沿海海洋沉积物中发现。对其代谢能力的详细分析显示,海姆达尔奇亚的行会与其他Asgardarchaeota不同。这些古细菌编码有氧真核生物的标志,包括电子传输链配合物(III和IV),血红素的生物合成以及对活性氧(ROS)的反应。Heimdallarchaeia膜结合的氢化酶的预测结构结构包括其他复合物样亚基,可能会增加质子的动力和ATP合成。Heimdallachaeia基因组编码COXD,该COXD调节真核生物中的电子传输链(ETC)。因此,在Asgard-e Cabaryotic祖先中可能存在有氧呼吸的关键标志。此外,我们发现Heimdallarchaeia存在于各种塞米亚海洋环境中。这种扩展的多样性揭示了这些古细菌在真核生物的早期阶段可能带来的能量优势,从而加剧了细胞复杂性。
摘要:小米是禾本科的一种小粒谷物。它们被认为是气候适应性强、未来人类营养丰富的谷物。与其他主要谷物相比,小米对生物和非生物胁迫具有抗性,在低质量、维护较少、降雨较少的土壤中生长良好。由于小米在亚洲和非洲半干旱热带地区不太流行和不常种植,许多人仍然不太了解小米的重要性。联合国已宣布 2023 年为国际小米年 (IYM 2023),以促进小米种植并在全球范围内推广其健康益处。几年前,由于缺乏基因组序列,分子生物学在小米中的应用还处于起步阶段。大多数小米的基因组序列都可以在 NCBI 和 Phytozome 数据库中找到。在这篇综述中,我们讨论了小米基因组序列的细节,以及从小米原生基因组中识别出的候选基因。本文还讨论了小米数量性状基因座和全基因组关联研究的现状。利用小米基因组序列进行功能基因组学研究并将信息转化为作物改良将有助于小米和非小米谷物在未来的恶劣环境中生存。这些努力将有助于加强粮食安全并减少 2050 年全球营养不良。
护理是为了确保本出版物中包含的信息的准确性。但是,MLA对于出版物中包含的信息或意见的准确性或完整性不承担责任。在做出有关您的利益的决定之前,您应该进行自己的询问。MLA对于仅依靠本出版物而造成的任何损失并不承担任何责任,并且由于任何人对此类信息或建议的依赖而排除了所有责任。除了根据1968年版权法所允许的任何用途外,所有权利都明确保留。请求进一步授权的请求应针对NEST 2059 North Sydney的Content Manager,PO Box 1961或info@mla.com.au。©肉与牲畜澳大利亚2024 ABN 39 081 678 364。于2024年4月出版。
1 Centro de Biotecnolologe i y gen gen gen gen rica de Plantas(CBGP),研究所研究Instituto nacional deIncorkingaciónyy y y y y y y agraria y Food(Inia-csic),政治是Cnica de Madrid(UPM),28222333233323332233233 pozuelo de alarar c。 daniel.truchado@upm.es(D.A.T。); mjuamol@ibmcp.upv.es(M.J.-M。); sararincre@gmail.com(s.r。); lucia.zurita@inia.csic.es(L.Z. ); jaime.tome@upm.es(J.T.-A。) 2 Unidad deInnovación Biom是Dica,调查中心能量是TICAS,中世纪,tecnológicas(ciemat),Avenida Complutense 40,28040,西班牙马德里; chorz@ciemat.es 3 Institution ofResjuctionación健康医院12 de Octubre(IMAS12),Avenida decórdobas/n,28041 Madrid,西班牙4RespessivaciónBiom中心是Red de decáncer(Ciberonc),Avenida de Monforte de Monforte de Monforte de Monforte de lemos 3-5-5统治:fponz@inia.csic.es†当前地址:Biologo de Instituto deBiologoí分子Y Celular de Plantas(IBMCP),UPV-CSIC,C/de l'Enginyer Fausto Elio s/n,46022,46022,Val是Ncia,Spain。); jaime.tome@upm.es(J.T.-A。)2 Unidad deInnovación Biom是Dica,调查中心能量是TICAS,中世纪,tecnológicas(ciemat),Avenida Complutense 40,28040,西班牙马德里; chorz@ciemat.es 3 Institution ofResjuctionación健康医院12 de Octubre(IMAS12),Avenida decórdobas/n,28041 Madrid,西班牙4RespessivaciónBiom中心是Red de decáncer(Ciberonc),Avenida de Monforte de Monforte de Monforte de Monforte de lemos 3-5-5统治:fponz@inia.csic.es†当前地址:Biologo de Instituto deBiologoí分子Y Celular de Plantas(IBMCP),UPV-CSIC,C/de l'Enginyer Fausto Elio s/n,46022,46022,Val是Ncia,Spain。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2024年3月26日发布。 https://doi.org/10.1101/2024.03.26.586808 doi:Biorxiv Preprint
生物体发展发光的能力取决于发光底物荧光素的生物合作论。对于大多数生物发光物种(通过氧化各种荧光素而发光),编码生物发光途径的完整基因尚不清楚。目前只有两种导致荧光素生物合成的途径:来自细菌的脂肪酸代谢的一个分支,由Lux Operon 1和咖啡酸周期编码,这是真菌2中发现的苯基丙型类药物代谢的分支。自1980年代后期以来,细菌途径就已经知道。但是,它并未在真核生物3、4中广泛应用,这可能是由于途径中间体5的光输出和毒性低。相反,酶在真菌nambinus nambi中催化发光的咖啡酸周期的发现(图1a)迅速转化为具有自动透明的多细胞生物的开发 - 孔孔6-8和在植物学9 - 11中的瞬时表达测定的记者工具。与来自自然12的其他成像工具类似,野生型真菌生物发光途径(FBP1)在异源宿主中进行了次级次数。在生理相关的温度下,酶的酶活性低和稳定性有限2导致适度
振荡器的集合是非线性动力学研究中最重要的对象之一。他们的研究结果可以在神经生理学,细胞生物学,量子物理学,信息和电信系统以及其他跨学科的学科中找到实际应用[1-7]。由于相互作用而产生的大量非线性现象,它们的动态富含和多样化。最显着的非线性效应之一是同步现象[5-7]。同步理论已经发展了很多年,并且出现了经典问题的新方面,通常在最简单的基本模型中,这种解决方案显着丰富了有关自我激发系统非线性动态的基本思想。由于交互作用,系统的动力学可能变得更加复杂。例如,HyperChaos [8]可以在耦合混沌振荡器系统中产生。在Chua的电路环[9]中发现了这种现象[9],在两个可变[10-12]的线性散位中,在COLPITTS振荡器中,通过两个线性电阻器的均值[13]以及在耦合的对立的抗抗原驱动器Toda oscillators [14]中[10-12] [10-12]中[10-12]中。在某些特殊条件下,还可以获得与周期性机制相互作用模型的超cha的发生。例如,在单向耦合的相同的相同的振荡器的环中,稳定状态稳定而无需偶联,由于存在线性交叉di效偶联,就会出现超cha曲线[15]。此外,这种类型的复杂行为另一个例子是三个通过法定感应机制相互作用的遗传抑制剂的集合[16]。在该模型中,振荡器是相同且强烈耗散的,但是非线性耦合会导致动力学甚至超基ch的外观的复杂性。
