ag,Cu和SN的电催化剂有望在气体扩散电极上还原性动力学和效率。ag,Cu,SN硫化物催化剂尤其可能会提供改变的电子适用岩和产品选择性,同时仍然易于在可缩放的合成路线中制造。比较Cu 3 SNS 4,Ag 3 SNS 4,Cu 2 S,SNS和AG 8 SNS 6的CO 2降低(CO 2 RR)在100 mA cm -2时的Cu 3 SNS 4,Cu 2 S,SNS和AG 8 SNS 6,甲酸甲酸甲酸盐被认为是Cu 3 SNS 4和AG 3 SNS的FARADAIC 57%的主要CO 2 RR。通过X射线光电子光谱(XPS)和X射线衍射的表征揭示了CO 2 RR期间相应硫化物物种的Ag 3 Sn和Cu 3 Sn合金的形成。但是,在-100 mA cm -2时2小时分解为CuO和SNO的Cu 3基电极表面,XPS可以通过XPS删除表面层后检测到相应的电极表面上的金属AG 3 SN位点。使用密度函数理论,计算 *H, *CO和 *OCHO的结合能在Cu 3 Sn和Ag 3 SN上计算以鉴定可能的催化位点。因此,发现SN会呈现Cu和Ag高含氧化性,从而导致羧基功能的吸附,从而使甲酸盐产生能够甲酸盐产生,其部分电流密度高达162 mA CM -2。
摘要:南极半岛 (AP) 周围地区正面临快速的气候和环境变化,目前尚不清楚这对大陆架底栖微生物群落的影响。在本研究中,我们使用 16S 核糖体 RNA (rRNA) 基因测序研究了对比海冰覆盖对 AP 东部大陆架沿线五个站点表面沉积物中微生物群落组成的影响。无冰期较长的沉积物中的氧化还原条件以普遍存在的含铁区为特征,而冰层覆盖严重的站点则存在相对较宽的上部含氧区。低冰盖站位主要由脱硫杆菌门(主要是 Sva1033 、脱硫杆菌和脱硫球菌)、粘球菌和 Sva0485 微生物群落组成,而重冰盖站位则以伽马变形菌、α变形菌、拟杆菌和 NB1-j 为主。在含铁区,Sva1033 是所有站位脱硫单胞菌目中的优势成员,与其他 11 个分类单元一起,与溶解铁浓度呈现显著的正相关,表明其在铁还原中发挥重要作用或与铁还原剂存在生态关系。我们的研究结果表明,海冰覆盖及其对有机碳通量的影响是底栖微生物群落变化的主要驱动因素,有利于有机物通量增加的站位出现潜在的铁还原剂。
抽象目的:比较剖腹产和阴道出生的碳足迹。设计:生命周期评估(LCA)。设置:英国和荷兰的三级产妇和家庭分娩。人口:分娩妇女。方法:使用OpenLCA软件使用OpenLCA软件来建模英国和荷兰不同交付方式的碳足迹。主要结果指标:“碳足迹”(在kgco 2等效物中[kgco 2 e])。结果:不包括镇痛,英国剖腹产的碳足迹为31.21 kgco 2 E,而医院的阴道出生为12.47 kgco 2 E,在家中为7.63 kgco 2 E。在荷兰,剖腹产的碳足迹较高(32.96 kgco 2 E),但在医院和家庭中阴道出生的碳足迹(分别为10.74和6.27 kgco 2 E)。排放范围从0.08 kgco 2 E(具有阿片类镇痛)到237.33 kgco 2 E(含氧氧化二氮)。镇痛使用的差异导致荷兰阴道出生的平均碳足迹低于英国(11.64对193.26 kgco 2 E)。结论:如果排除镇痛,剖腹产的碳足迹高于阴道出生,但这对所使用的镇痛非常敏感。使用氧气的氧化氧化物乘以25倍的阴道出生的碳足迹。止痛或一氧化二氮破坏系统的替代方法将导致碳足迹大大改善。尽管临床需求和产妇选择至关重要,但方案应考虑不同选择的环境影响。
脱节酸是一种古老的普遍类异丙裔化合物,存在于环境的不同水平发展水平。在1940年代,首先注意到植物的生长,在1960年代中期,植物表明,调节其余植物的植物调节植物的恢复。2010年的研究揭示了吸收酸的生物合成。从甲丙酸合成为起始场所合成的Xanthophylls的降解程度是生物活性吸收酸,氧 - 富含氧的二萜分子。脱甲酸作为继发代谢产物会影响植物的许多生理过程。在过去的二十年中,通过蛋白酸的通用信号传导途径研究了分子遗传学,生化和药理学研究。1986年,1986年,发现与这些测试并行进行的动物实验是在动物体内产生的。千年后,在动物器官,组织,细胞(白细胞,单核细胞/巨噬细胞,粒细胞,微胶质细胞,胰腺细胞,间质干细胞等)中宣布了越来越多的人。玩。到目前为止,关于该化合物的多功能生理效应,还有大量文献。已被证明是人类的内源激素。在动物和人类中的脱甲酸都非常旨在向植物中的植物发出信号,因此它以类似的方式控制,包括细胞生长,发育和对各种刺激的免疫反应。orv hetil。也已被称为动物体作为生长调节剂无毒,但同时抑制了癌细胞的生长。对碳水化合物代谢具有积极作用,并且具有抗炎特性,但也描述了炎症的炎症作用。目前正在研究人类药用的可能性。2025; 166(2):43-49。
摘要:脉搏血氧饱和度代表现代医学中光学的无处不在的临床应用。最近的研究引起了人们对混杂因素的潜在影响的担忧,例如可变的皮肤色素沉着和灌注对脉搏血氧仪中血氧饱和度测量精度的影响。模拟幻影测试提供了低成本,控制良好的解决方案,用于表征设备性能并研究潜在的误差源,从而可以减少对体内昂贵的体内试验的需求。这项研究的目的是开发基于幻影的脉搏血氧仪的测试方法。材料光学和机械性能审查,选择和调整以达到最佳的生物学相关性,例如,含氧组织的吸收和散射,强度,强度,弹性,硬度以及代表人手指的几何形状和组成的其他参数,例如血管大小和分布和分布和灌注。相关的解剖学和生理特性总结并实施,以创建初步的手指幻影。为了创建初步的手指幻影,我们合成了一个具有散射器的高符合硅胶基质,用于嵌入柔性管,并研究了这些散射物在新颖的3D打印树脂中以进行光学性能控制,而无需改变机械稳定性,而不改变具有与生物学特征的幻象的产生。幻影实用程序。3D印刷幻象在生物学上相关的条件更加相关。这些初步结果表明,幻影具有强大的潜力,可以发展为评估脉搏血氧仪性能的工具。差距,建议和策略是为了持续的幻影开发而提出的。
氧化石墨烯(GO)是由SP2杂交碳原子组成的蜂窝状晶格样二维片,表面上有许多含氧的活性基,例如羰基,羟基,羧基和环氧基组(1)。层状结构和含有丰富的氧气的GO组确定其高比表面积,良好的亲水性和易于修饰(2-4)。go及其衍生物已被广泛应用于生物医学领域的许多方面,例如化学疗法药物的递送(5-7),抗菌材料的制备(8,9),体内生物成像(10,11),牙科纸浆修复(12)和肿瘤的光疗治疗(13,14)。,它们有很大的潜力用于临床实践。随着GO的进一步应用,其生物毒性和安全性已成为研究的重点。一项研究报告说,纳米级GO对斑马鱼胚胎发育有剂量依赖性毒性作用(15)。一些学者发现,GO纳米颗粒的口服给药在果蝇的后代中引起各种行为和发育缺陷(16)。一项基于人类胚胎肾细胞的研究还表明,GO对人类胚胎肾细胞具有显着的剂量依赖性细胞毒性作用(17)。研究发现,GO及其衍生物的毒性与其表面涂料,剂量,粒径和给药途径有关,其中给药途径是最关键的,口服给药的安全性最高(18,19)。但是,目前,很少有关于口服GO的生物学毒性及其对肠道菌群的影响的研究。此外,一项关于职业暴露风险的研究表明,口腔是基于石墨烯基材料的主要暴露途径之一(20)。本研究试图检查口服GO的胃肠道毒性及其对肠道菌群的影响。我们根据到达报告清单(可在https://atm.amegroups.com/article/article/view/10.21037/atm-22-22-922/rc)介绍以下文章。
摘要:在环境压力下的散装材料中的非常规超导性在分层酸奶和基于铁的家族外的3D过渡金属化合物中极为罕见。它主要与高度各向异性电子特性和准二维(2D)费米表面有关。迄今为止,基于CO的异国情调超导体的唯一已知示例是水合分层的钴酯,Na X COO 2·Y H 2 O,其超导性在Spin-1/2 Mott State附近实现。然而,这些材料中超导性的性质仍然是一个激烈争论的主题,因此,找到一类新的超导体将有助于揭开其非常规超导性的奥秘。在这里,我们报告了我们新合成的分层化合物Na 2 Cose 2 O的超导性在〜6.3 k处的发现,其中边缘共享的cose 6 cose cose 6 cose 2]层[Cose 2]层,具有完美的三角形三角形晶格。这是具有独特的结构和化学特性的第一个3D过渡金属氧源超导体。尽管其相对较低的t c,该材料表现出非常高的超导临界场,μ0h c2(0),远远超过了保利的顺磁性极限3-4。第一原理计算表明Na 2 Cose 2 O是负电荷转移超导体的罕见示例。■简介CO旋转中具有几何挫败感的这种含氧盐含量具有很大的潜力,作为实现非常规和/或高t C超导性的高度吸引人的候选人,超出了公认的Cu-和Fe基超导和基于FE的超导家族,并在低调的物理学和化学领域打开了一个新领域。
FOI 23/243 – 氧化石墨烯是否用于辉瑞 Covid-19 疫苗请求 2023 年 4 月 3 日 我想根据信息自由权再次询问氧化石墨烯是否用于制造 Mrna 疫苗(特别是辉瑞疫苗) 链接来自 2020 年 4 月 7 日至 8 月 19 日的辉瑞文件 https://phmpt.org/wp-content/uploads/2023/02/125742_S1_M4_4.2.1-vr-vtr-10741.pdf MHRA 回复 2023 年 5 月 5 日 亲爱的,感谢您的电子邮件。您在请求中提到的文本与低温电子显微镜 (cryo-EM) 的样品制备有关,与疫苗的成分无关。这在提到的结论部分中有描述。 “通过低温电子显微镜确认,由 BNT162b2 编码的 P2 S 氨基酸序列的 DNA 表达的蛋白质处于融合前构象。该分析表明,抗原性重要的 RBD 可以呈现“向上”构象,其中受体结合位点富含中和表位,可在一定比例的分子中接触 (Zost 等人,2020 年)。“ 石墨烯与疫苗产品没有任何关联,相反,石墨烯是一种用于支撑生物样本的材料,有助于使用电子显微镜对 3-D 结构进行成像。这类似于显微镜上的玻璃载玻片与被研究的样本分离的方式。任何授权疫苗中均不含氧化石墨烯,每种疫苗中的辅料清单均可在该疫苗的《医疗专业人员信息》中找到。这些文件可在以下链接中找到: 辉瑞/BioNTech COVID-19 疫苗的监管批准 - GOV.UK(www.gov.uk) Vaxzevria(以前称为阿斯利康 COVID-19 疫苗)的监管批准 - GOV.UK(www.gov.uk) Moderna COVID-19 疫苗的监管批准 - GOV.UK(www.gov.uk) 公司必须披露《2012 年人类药物管理条例》中详细说明的活性物质和所有赋形剂。
摘要:我们描述了具有一系列酰胺指导组的吲哚胺的钯催化的C7-乙酰化。虽然在吲哚核和N1-acyl组上耐受多种取代基,但乙酰氧基化对C2-和C6-丁香碱取代基最敏感。使用MMOL尺度上的肉桂酰胺底物证明了这种吲哚C7-乙酰氧基化的实用性。几个N1-acyl组,包括天然生物碱中存在的基团,在竞争性的C5氧化中指导吲哚胺底物的C7-乙酰氧基化。这种化学的应用允许首次通过晚期C17-乙酰乙酰化的N-苯甲酰苯甲胺的后期C17-乙酰氧基化首次合成N-苯甲酰丙烯酸酯。简介吲哚氨基结构在许多生物活性吲哚生物碱中无处不在。1吲哚生物碱的aspidosperma家族包括化学合成的当前感兴趣的成员,鉴于其结构复杂性,具有连续的立体中心以及在多环芯上的氧化和取代程度。1,2个生物碱家族的许多成员在吲哚细胞结构上具有C17 -O键(图1A)。1b,3,4 c17-氧化的aspidosperma生物碱的策略在很大程度上取决于使用被转化为吲哚氨基结构的含氧启动材料。5值得注意的是,过渡金属在催化C – O键通过Arene功能化6的最新进展尚未应用于C17氧化的aspidosperma生物碱的合成。受单一吲哚碱生物碱的生物合成的启发,其中多环状核心经历酶促修饰,包括甲基化,酰基化和C – H氧化,7我们寻求化学选择性的C17-氧合C17-氧化作用,以使其均匀的综合综合综合,以促进了疗程。
带有2D材料的膜表面涂层已显示出用于水处理应用的防婚特性。但是,目前基于真空过滤的合成方法不容易缩放。本研究描述了一种可扩展的方法,可用于涂层膜,包括氧化石墨烯(GO),六边形硝酸氢硼(HBN),二硫化钼(MOS 2)和二硫化钨(WS 2)。使用含氧剂将含有每类2D薄片的异丙基醇溶液喷涂到商业聚偏氟化物(PVDF)上。纳米材料用聚多巴胺(PDA)作为一个可以轻松地集成到可扩展的滚动过程中的方法中的交联。使用扫描电子显微镜,原子力显微镜,接触角,拉伸强度测量和傅立叶转换红外光谱法评估了形态,表面粗糙度,疏水性,机械耐用性和化学组成的变化。在72 h的膜蒸馏(MD)实验中测试了2D纳米材料涂层的膜,并将其与原始的PVDF和PDA/PVDF膜进行了比较。使用高浓度的腐殖酸(150 ppm)和石蜡油(200 ppm)的盐排斥和MD性能稳定性评估,从而模拟了从油气萃取中模拟简单的有机废水。通量下降比以每小时渗透率损失百分比(%/h)来衡量,以便将来与不同的实验时间进行比较。所有膜的盐分排斥很高(> 99.9%)。原始的PVDF膜在10小时后因结垢而导致孔隙润湿失败,而PDA/PVDF膜的通量下降率最大(0.3%/小时)。涂有GO和HBN的膜的通量下降比较低(分别为0.0021±0.005和0.028±0.01%/h)。Go涂层的膜是唯一能够治疗含有表面活性剂和含有污垢的饲料的膜类型。改进的性能归因于表面粗糙度和疏水性的降低,这降低了污垢表面上的污垢吸附。这项工作显示了一种可延展的可扩展方法来克服MD中的犯规限制。