1)Kantor Ed等。从1999 - 2012年开始,美国成年人的处方药使用趋势。JAMA 2015; 314:1818-1831。 2)Vaezi MF等。 质子泵抑制剂治疗的并发症。 胃肠病学2017; 153:35-48。 3)Malfertheiner P等。 质子泵抑制剂:了解并发症和风险。 nat Rev胃肠肠肝素2017; 14:697-710。 4)Moayyedi P等。 质子泵抑制剂的安全性基于接受利伐沙班或阿司匹林的大型,多年的随机试验。 胃肠病学2019; 157:682-691.e2。 5)Freedberg de等。 长期使用质子泵抑制剂的风险和好处:美国胃肠道学会的专家审查和最佳实践建议。 胃肠病学2017; 152:706 - 715。 6)Xie Y等。 所有导致死亡率的估计值,并导致与质子泵抑制剂相关的特定死亡率:同类研究。 BMJ 2019; 365:L1580。 7)Lo Ch等。 质子泵抑制剂与全因和特定原因死亡率的关联。 胃肠道2022; 163:852-861。 8)Targownik LE等。 AGA临床实践更新质子泵抑制剂:专家评论。 胃肠病学2022; 162:1334-1342。 9)iijima K等。 日本男性在20年内胃酸分泌的时间序列分析。 J Gastroenterol 2015; 50:853-861。 10)Fujiwara Y等。JAMA 2015; 314:1818-1831。2)Vaezi MF等。质子泵抑制剂治疗的并发症。胃肠病学2017; 153:35-48。3)Malfertheiner P等。质子泵抑制剂:了解并发症和风险。nat Rev胃肠肠肝素2017; 14:697-710。4)Moayyedi P等。质子泵抑制剂的安全性基于接受利伐沙班或阿司匹林的大型,多年的随机试验。胃肠病学2019; 157:682-691.e2。5)Freedberg de等。长期使用质子泵抑制剂的风险和好处:美国胃肠道学会的专家审查和最佳实践建议。胃肠病学2017; 152:706 - 715。6)Xie Y等。所有导致死亡率的估计值,并导致与质子泵抑制剂相关的特定死亡率:同类研究。BMJ 2019; 365:L1580。7)Lo Ch等。质子泵抑制剂与全因和特定原因死亡率的关联。胃肠道2022; 163:852-861。8)Targownik LE等。AGA临床实践更新质子泵抑制剂:专家评论。胃肠病学2022; 162:1334-1342。9)iijima K等。日本男性在20年内胃酸分泌的时间序列分析。J Gastroenterol 2015; 50:853-861。10)Fujiwara Y等。日本人口中GERD的流行病学和临床特征。J Gastroenterol 2009; 44:518-534。11)Miyamoto M等。连续的质子泵抑制剂治疗可减少日本粗糙区域的胃肠道出血和相关死亡。J Gastroenterol Hepatol 2012; 27:372-377。12)Iwakiri K等。基于证据的胃食管食管反射氏病2021。J胃肠肠肠肠肠; 2022; 57:267-285。13)Watanabe K等。用Vonoprazan vs质子泵抑制剂抑制有效的酸与艰难梭菌感染没有更高的关联。AM J Gastroenterol 2021; 116:1632-1637。14)由日本胃肠病学学会编辑:胃食管反流病(GERD)临床指南2021(修订版第3版),东京Nankodo,2021年。
•如果您使用的是Winmostar V11.5.0或更高版本,并且使用64位环境,请安装和配置Cygwinwm 2023/04/05或更高版本。
鉴于2023年国内市场利率持续偏低,穗信云链把握机遇,加强与各大金融机构的紧密合作,以更高效率、更低利率为中小企业提供信贷支持。集团不仅全面支持新一代票据及供应链票据受理,还加强银行承兑汇票受理,与近10家银行合作。随着穗信云链服务受理能力的进一步提升,2023年交易规模突破百亿元,较去年同比增长131%。其中票据业务同比增长185%,带动金融科技服务板块经营利润达4,300万港元,同比增长190%。
Sample SE T /dB SE R /dB SE A /dB SE A /SE R /% SSE t /(dB·(cm −2 ·g) −1 ) M3-MX-0 5.0 0.9 4.0 4.3 87.6 M3-MX-5 6.8 1.5 5.3 3.5 147.5 M3-MX-10 7.2 1.7 5.5 3.2 171.0 M3-MX-15 7.0 1.7 5.3 3.0一直m3-ag@mx-15 69.0 10.3 58.7 5.7 2 356.6 m3-ag@mx-20 68.2 10.3 57.8 5.6 2 719.8 m3-ag@mx-25 67.9 10.0 57.0 57.9 5.8 2 439.4 2 439.4
lah 10(T C = 250 K),Drozdov和Al。(2019)LAH 10(T C = 260 K),Somayazalu和Al。(2019)YH 9(T C = 243 K),Kong和Al。(2019)YH 6(T C = 224 K),Troyan和Al。(2019)CAH 6(T C = 215 K),但等。(2021)CAH 6(T C = 210 K),Li和Al。(2022)SH 3(T C = 203 K),Drozdov和Al。(2015)THH 10(T C = 161 K),Semenoch和Al。(2019)CEH 10(T C = 115 K),Chen和Al。(2021)CEH 9(T C = 100K),Chen和Al。(2021)YH 4(T C = 88 K),Shao和Al。(2021)BAH 12(T C = 20 K),Chhen和Al。(2021)SNH X(T C = 70K),Hong和Al。(2022)
Figure 12.1540-MeV 209Bi ion irradiation 1.7 × 10 11 ions/cm 2 TEM images of AlGaN/GaN HEMT devices: (a) Gate region cross-section; (b) The orbital image of the heterojunction region shown in Figure (a); (c) The image shown in Figure (a) has a depth of approximately 500 nm; (d) Traces formed at the drain; (e) As shown in Figure (d), the trajectory appears at a depth of ap- proximately 500 nm [48] 图 12.1540-MeV 209Bi 离子辐照 1.7 × 10 11 ions/cm 2 的 AlGaN/GaN HEMT 器件的 TEM 图像: (a) 栅极区域截面; (b) 图 (a) 所示异质结区域轨道图 像; (c) 图 (a) 所示深度约 500 nm 图像; (d) 在漏极形成的痕迹; (e) 如图 (d) 所示,轨迹出现在深度约 500 nm 处 [48]