由于脑部结构复杂,且容易受到中风、肿瘤等各种病症的影响,脑分割对于神经系统疾病的准确诊断和治疗至关重要。挑战在于如何在医学图像中精确描绘出解剖和病理结构,尤其是在图像质量和组织不规则性各不相同的情况下。为了解决这个问题,我们应用了八种元启发式优化算法——爬行动物搜索算法、虎鲸捕食者算法、白头鹰搜索、灰狼优化器、蜜獾算法、乌鸦搜索算法、哈里斯鹰优化和金枪鱼群优化——来提高 Kapur 熵、Tsallis 熵和 Otsu 方法等多阈值分割方法的准确性。结果显示,灰狼优化器和金枪鱼群优化脱颖而出,其中灰狼优化器在峰值信噪比和结构相似性指数等关键指标上表现出色。这些结果凸显了灰狼优化器在高级脑组织分割方面的潜力,在精确度对于有效的医疗干预至关重要的临床和研究环境中提供了显著优势。
摘要 - 幕后(BTM)光伏电池系统的经济潜力在很大程度上取决于电池的发货方式。不同的效用率,系统大小,生成和负载填充物都需要不同的调度策略。本文介绍了价格信号调度,这是一种用于自动经济派遣的新算法,用于使用24小时的PV和负载预测,退化数据和公用事业率。该算法与系统顾问模型(SAM)工具集成在一起,并通过非线性通用电动机电池模型进行了测试。价格信号在需要收费管理和能源套利之间保持平衡的情况下,并且在电池降解会施加显着费用的情况下,Prictals Dispaths Pristals优于SAM的现有算法。索引项 - Solar Plus存储,电池,电池调度,系统顾问模型,SAM,幕后
- 需要大量“真实”数据 - 这些数据可能会有偏差 - 示例:统计差异箱的数量 (NDB) - 示例:MuseGAN 客观指标(下一张幻灯片) - 人类专业知识
引言启发式搜索是在大型状态空间中找到短路的常见方法,例如在最佳的古典计划中。最近提出的几项启发式方法使用合并框架(Dr'Ager,Finkbeiner和Podelski 2006; 2009; 2009; Helmert,Haslum和Hoffmann 2007; Helmert et al。2014),其中计划任务的原子抽象是逐渐组合的(合并了两个实体过渡系统)和简化的(缩小了一个差异过渡系统),直到剩下单个抽象为止,其目标距离然后诱导计划任务的启发性。在整个论文中,我们都对经典计划和合并和碎片框架进行了基本熟悉。由Sievers,Wehrle和Helmert(2014)提供了对合并框架最新探索的独立介绍。合并策略的合并策略的一个重要方面是确定在每个合并步骤中要组合的两个中间抽象。我们将使用以下术语:任务的合并策略由二进制树在任务的状态变量上定义。如果此树脱离列表,则称为策略,否则是非线性的(图1)。更普遍地说,当从文献中发表合并策略时,我们指的是(独立于领域的)算法,该算法为给定的计划任务生成合并策略。这样的al-gorithm被称为线性合并策略,并且仅当其产生的合并策略对于所有计划任务都是线性的。换句话说,非线性合并策略算法不是
摘要 - 元启发式算法的自动设计提供了一种有吸引力的途径,以减少人类努力并增强人类直觉的增强绩效。当前的自动化甲基ODS设计算法在固定结构内并从头开始操作。这构成了明显的差距,以完全发现对元启发式家庭的潜力,并从先前的设计经验中施肥。为了弥合差距,本文为自动化算法设计的自动化学习设计师提供了自动化的学习设计师。我们的设计师将元启发式算法设计作为序列生成任务,并利用自动回归的生成网络来处理该任务。这提供了两个进步。首先,通过自我重新推断,设计师生成具有不同长度和结构的算法,从而使元硫素家族的潜力充分发现了潜力。第二,可以检索在设计师的神经元中学习和积累的事先设计知识,以设计用于未来问题的算法,为连续设计算法的方式铺平了为开放式问题解决的方法。对数字基准和现实世界中问题的广泛实验表明,所提出的设计师生成的算法在25个测试问题中的24个中都超过了所有人类创建的基线的算法。生成的算法显示了各种结构和行为,适合不同的解决问题的上下文。代码将在纸质出版后发布。
对于许多顺序决策问题,通常需要计划才能找到解决方案。但是,对于诸如机器人技术中遇到的域,换句函数(也称为世界模型)通常是未知的。虽然基于模型的强化学习方法学习了可以用于计划的世界模型,但此类方法受到在许多时间段应用模型应用时会累积的错误限制,并且无法重新识别计划的状态。为了解决这些问题,我们介绍了DeepCubeai,这是一种算法,该算法学习了一个世界模型,该模型代表了在离散的潜在空间中代表状态,使用增强学习学习学习一种启发式功能,该功能使用该学识渊博的模型将概括性和目标状态概括,并将学习的模型结合在一起,并将启发式功能与启发式搜索相结合,以解决问题。由于潜在空间是离散的,因此我们可以通过舍入来防止小错误的积累,我们可以通过简单地比较两个二进制向量来重新识别状态。在我们对Rubik Cube,Sokoban,Icelider和DigitJump的像素表示的实验中,我们发现DeepCubeai能够将模型应用于数千个步骤,而不会出现任何错误。此外,DeepCubeai在所有领域中解决了99%以上的测试实例,跨目标状态概括了,并且大大优于贪婪的政策,而贪婪的政策没有与学识渊博的世界模式计划。
桑迪亚国家实验室是一个多任务实验室,由桑迪亚国家技术与工程解决方案有限责任公司管理和运营,该公司是霍尼韦尔国际公司的全资子公司,为美国能源部国家核安全局管理,合同编号为 DE-NA0003525。
蔡明华博士 SIMTech Dou Yee Technologies – SIMTech/IMRE/IHPC JL – 开发先进粉末冶金 (PM) 制造以提高技术能力和运营效率 陈庆锋博士 IMCB 以新型体外和体内肿瘤模型为指导的 CAR-T 疗法开发 康昌伟博士 IHPC 液化天然气和海上风电的数字化设计和优化 黄兆宏博士 SIMTech 航空航天 MRO 的数字化先进制造工艺 程方博士 ARTC JM VisTec A*STAR 智能视觉联合实验室 用于棕地应用的 3DPLUS 视觉技术 Vempati Srinivasa Rao IME IME 先进包装 3.0 应用卓越中心(包装 3.0) 苏心懿博士 IMCB IMCBNUSSERIXCell 联合实验室:RECET(再生细胞疗法)
元启发式学在学术界和实践中取得了巨大的成功,因为他们的搜索逻辑可以应用于可用的解决方案表示,解决方案质量评估和当地概念的任何问题。手动设计用于解决目标问题的元启发式算法因费力,容易出错和需要密集的专业知识而受到批评。这引起了人们对元启发式算法自动设计的兴趣越来越大。具有充分探索潜在设计选择的计算能力,自动化设计可以达到甚至超过人类水平的设计,并且可以使许多更广泛的研究人员和从业者可以使用高性能算法。本文通过就设计领域,设计策略,绩效评估策略和该领域的目标问题进行了一项调查,介绍了元启发式算法自动设计的广泛图景。
将可再生能源整合到智能电网中为构建可持续和可靠的能源系统提供了一种有希望的解决方案。然而,优化混合可再生能源系统仍然是一个关键的研究领域。这项研究提出了一种综合方法,将人工智能算法技术与元启发式优化算法相结合,用于预测和管理智能电网环境中的可再生能源。提出的混合 LSTM-RL 模型的精确度、召回率和准确度分别为 0.92、0.93 和 0.92,在正确预测能源需求模式方面优于当前算法。RL-SA 算法对各种负载平衡措施的准确率为 0.91,可有效衡量负载平衡。 CNN-PSO 算法的均方误差 (MSE)、平均绝对误差 (MAE)、R 平方得分、均方根误差 (RMSE) 和平均绝对百分比误差 (MAPE) 分别为 345.12、15.07、0.78、18.57 和 7.83,在预测可再生能源发电方面也最为成功。这些发现有助于智能电网环境中的混合可再生能源系统的发展,实现有效、可靠和经济的能源生产和分配。建议的解决方案还有可能用于农村和离网环境。总体而言,这项研究提供了一种最大限度地提高可再生能源产量的有用方法,并为进一步研究能源管理系统提供了灵感。© 2023 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可 (http://creativecommons.org/licenses/by/4.0/) 开放获取的文章。