摘要。这项工作将硼亚苯丙氨酸氯化物(B-SUBPC-CL)作为有机电子材料的结构,热重,光学和电化学性质。FullProf Suite程序和Rietveld分析用于完善和索引B-SubPC-CL的晶体结构。使用Horowitz-Metzger和Coats-redfern方法,使用热重分析(TGA)和差分热力学分析(DTG)研究动力学热重量因子。B-SUBPC-CL的吸收光谱包含两个强吸收带(Soret样带和Q样带)。通过使用B-SUBPC-CL的摩尔吸收性(ε摩尔)的高斯拟合来估算振荡器强度和电偶极强度。通过使用循环伏安法测量计算B-SUBPC-CL的Homo-Lumo和Band GAP。还提供了B-SUBPC-CL的UV-VIS - NIR吸收光谱和光条间隙。密度功能理论(DFT)方法已被用于为研究化合物获得几何优化的结构。理论计算与实验结果一致。获得的结果指出了B-SubPC-CL对有机电子应用的前景。
图2。(a)QD的吸收和PL光谱,(b)LMZO在溶液中的吸收光谱(c)QLED(d)的层(d),层堆栈(e)的能级比对,QLED结构(f)的横截面TEM图像(f)和性能参数。(g)中的插图显示了在12 V.
频谱也很明显。很明显,2D层正在3D表面进行快速转换,并在光辐射下失去了其特征。从相似的光照射条件下记录的吸收光谱进一步证实了这一方面(图1D)。在图1E中记录的差异吸收光谱中,可以更好地看到吸收中的这些变化。我们还分别用可见光照射了2D和MAPBI 3膜。在相似的辐照时间下,吸收峰没有重大变化(图S4)。在图1 C和D中光辐射过程中的发射和吸收变化表明,沉积在3D钙钛矿上的2D膜在可见的照射下是不稳定的,并且经历了转化。这进一步表明我们创建的2D/3D接口最初会随着持续的照射而消失。我们将2D钙钛矿层的这种不稳定的行为归因于较大阳离子(pea +)从(PEA)2 PBI 4的扩散到散装MAPBI 3中,从而在3D相中导致同质化。
摘要:红外量子吸收光谱是量子传感技术之一,通过可见光或近红外光子检测可估算样品的红外光学特性,无需红外光源或探测器,这一直是提高灵敏度和光谱仪小型化的障碍。然而,实验演示仅限于波长短于 5 µ m 或太赫兹区域,而尚未在通常用于识别化合物或分子的 1500–500 cm − 1(6.6 至 20 µ m)的所谓指纹区域实现。本文我们报告了指纹区域量子傅里叶变换红外 (QFTIR) 光谱的实验演示,通过该实验可以从用单像素可见光探测器获得的傅里叶变换量子干涉图中获得吸收光谱和相位光谱(复杂光谱)。作为演示,我们获得了硅晶片在 10 µ m (1000 cm − 1 ) 左右的透射光谱,以及合成氟聚合物片聚四氟乙烯在 8 至 10.5 µ m (1250 至 950 cm − 1 ) 波长范围内的复杂透射光谱,其中可以清楚地观察到由于 CF 键的拉伸模式而产生的吸收。这些结果为基于量子技术的新型光谱装置开辟了道路。
– 近期物理学研究最令人着迷的方面之一是人们熟悉的光学定律逐渐扩展到极高频的 X 射线,直到现在,光领域中几乎没有一种现象在 X 射线领域找不到平行。反射、折射、漫散射、偏振、衍射、发射和吸收光谱、光电效应,光的所有基本特性都被发现也是 X 射线的特性……
原理:UV吸收光谱基于以下原理:核酸(DNA和RNA)在特定波长(主要是260 nm)上吸收紫外线。吸收的紫外线量与样品中存在的核酸的浓度成正比。在260 nm处的吸光度与在280 nm处的吸光度比表明核酸的纯度,较高的比例表明纯核酸(蛋白质污染较少)。
颜料、浆料和油漆中粗颗粒的标准试验方法 附着有机涂层的芯轴弯曲试验的标准试验方法 镜面光泽的标准试验方法 在试板上生产均匀厚度的油漆、清漆和相关产品膜的标准试验方法 用福特粘度杯对油漆、清漆和漆料粘度的标准试验方法 颜料-载体体系分散细度的标准试验方法 挥发性溶剂和稀释剂气味的标准试验方法 室温下有机涂层干燥、固化或成膜的标准试验方法 通过仪器测量的颜色坐标计算色差的标准试验方法 用原子吸收光谱法测定油漆中低浓度铅、镉和钴的标准试验方法 用原子吸收光谱法测定油漆中低浓度铬的标准试验方法油漆、清漆、漆和相关材料调节和测试的标准环境规范 油漆和相关涂料中挥发性有机化合物 (VOC) 含量测定的标准实践 紫外线、可见光和分光光度计性能描述和测量的标准实践 用于非金属材料曝光的带水和不带水的光曝光设备 (氙弧型) 操作标准实践
这个实验背后的科学原理 所有植物都需要叶绿素来进行光合作用,但叶绿素并不只有一种。向阳植物的叶子中含有更多的叶绿素“a”,这是捕获光线的主要色素,可以吸收光谱两端的光线。在阴凉处生长的植物含有更多的不同色素:叶绿素“b”,它可以吸收从其他叶子反射的部分波长的光线(光谱的蓝色端)。能在阴凉处生长的植物每平方厘米的叶绿体数量也更多,叶绿体也更大,因此它们总体上可以捕获更多的光线。
无菌原理:包装材料供应商以单袋设计提供已用环氧乙烷 (ETO) 或蒸汽预灭菌的 RTU 容器。通过使用紫外线闪光,特别是在光谱的 UV-C 范围(100 - 280 nm),微生物会改变其分子结构并断裂共价键。其原因是 DNA 和蛋白质的吸收光谱位于 200 至 300 nm 之间。有两种方法可以消灭微生物:1) 光热效应(温度升高直至爆炸)和 2) 光化学效应(DNA 和蛋白质的改变)。