在结肠中肠上皮细胞的腔膜中表达了阴离子交换器蛋白SLC26A3(在腺瘤中下调),在那里它促进了Cl-和草酸盐的吸收。我们先前鉴定出从SLC26A3细胞质表面起作用的SLC26A3抑制剂的4,8-二甲基氨基菜蛋白类,并在小鼠的便秘模型和高氧化尿症模型中证明了它们的功效。在此,对主要筛选的50,000种新化合物和1740种活性化合物的化学类似物筛选产生了五种新型的SLC26A3选择性抑制剂(1,3-二氧二氨基氨基氨基酰胺; n- n-; n-(5-磺胺1,3,3,4- thiAdiAdiAdiAzol-2- yl-yl-yl-yl-yl-yl-yl-yl-yl-pir); 3-羧基-2-苯基苯并呋喃和苯唑嗪-4-一个),IC 50降至100 nm。动力学冲洗和作用研究发作揭示了噻唑洛 - 吡啶二肽-5-one和3-羧基-2-苯基苯甲酰苯甲氟烷抑制剂的细胞外作用部位。分子对接计算显示这些抑制剂的假定结合位点。在小鼠的洛陶化胺模型中,口服的7-(2-氯 - 苯甲基甲基)-3-苯基噻唑洛洛[3,2-A]吡啶蛋白-5-酮(3A)显着增加了粪便的体重,颗粒的数量和水含量。SLC26A3具有细胞外部作用部位的抑制剂提供了可能在口服后产生最小的全身性暴露的非吸收性,发光作用抑制剂的可能性。我们的发现还表明,可以鉴定出具有细胞外作用部位的相关SLC26阴离子转运蛋白的抑制剂,以用于对选定上皮离子运输过程的药理调节。
1. VRLA 技术 VRLA 代表阀控铅酸电池,这意味着电池是密封的。只有在过度充电或电池故障的情况下,气体才会通过安全阀逸出。VRLA 电池终身免维护。 2. 密封 (VRLA) AGM 电池 AGM 代表吸收性玻璃垫。在这些电池中,电解质通过毛细管作用被吸收到板之间的玻璃纤维垫中。正如我们在《无限能量》一书中所解释的那样,AGM 电池比胶体电池更适合短时间输送非常大的电流(发动机启动)。 3. 密封 (VRLA) 胶体电池 在这里,电解质被固定为凝胶。胶体电池通常比 AGM 电池具有更长的使用寿命和更好的循环容量。 4. 低自放电 由于使用铅钙板栅和高纯度材料,Victron VRLA 电池可以长时间存放而无需充电。20°C 时自放电率低于每月 2%。温度每升高 10°C,自放电率就会加倍。因此,如果保存在凉爽的条件下,Victron VRLA 电池可以存放长达一年而无需充电。 5. 卓越的深度放电恢复 Victron VRLA 电池具有卓越的放电恢复能力,即使在深度或长时间放电后也是如此。尽管如此,反复深度和长时间放电都会对所有铅酸电池的使用寿命产生非常负面的影响,Victron 电池也不例外。 6. 电池放电特性 Victron AGM 和 Gel Deep Cycle 电池的额定容量是指 20 小时放电,换句话说:放电电流为 0.05 C。Victron Tubular Plate Long Life 电池的额定容量是指 10 小时放电。有效容量随着放电电流的增加而降低(见表 1)。请注意,在恒定功率负载(如逆变器)的情况下,容量减少会更快。
1. VRLA 技术 VRLA 代表阀控铅酸电池,这意味着电池是密封的。只有在过度充电或电池故障的情况下,气体才会通过安全阀逸出。VRLA 电池终身免维护。 2. 密封 (VRLA) AGM 电池 AGM 代表吸收性玻璃垫。在这些电池中,电解质通过毛细管作用被吸收到板之间的玻璃纤维垫中。正如我们在《无限能量》一书中所解释的那样,AGM 电池比胶体电池更适合短时间输送非常大的电流(发动机启动)。 3. 密封 (VRLA) 胶体电池 在这里,电解质被固定为凝胶。胶体电池通常比 AGM 电池具有更长的使用寿命和更好的循环容量。 4. 低自放电 由于使用铅钙板栅和高纯度材料,Victron VRLA 电池可以长时间存放而无需充电。20°C 时自放电率低于每月 2%。温度每升高 10°C,自放电率就会加倍。因此,如果保存在凉爽的条件下,Victron VRLA 电池可以存放长达一年而无需充电。 5. 卓越的深度放电恢复 Victron VRLA 电池具有卓越的放电恢复能力,即使在深度或长时间放电后也是如此。尽管如此,反复深度和长时间放电都会对所有铅酸电池的使用寿命产生非常负面的影响,Victron 电池也不例外。 6. 电池放电特性 Victron AGM 和 Gel Deep Cycle 电池的额定容量是指 20 小时放电,换句话说:放电电流为 0.05 C。Victron Tubular Plate Long Life 电池的额定容量是指 10 小时放电。有效容量随着放电电流的增加而降低(见表 1)。请注意,在恒定功率负载(如逆变器)的情况下,容量减少会更快。
摘要,由于基于化石的材料引起的环境问题,从生物基础资源中开发了可持续材料。木质素是一种化学复杂的生物聚合物,存在于血管植物的木质组织中。木质素具有许多有用的特性,例如抗氧化活性,热稳定性,紫外线吸收性,刚度等。然而,木质素的固有挑战与其复杂的分子结构以及在水和常见溶剂中的溶解度差有关。一种利用木质素的一种策略是制造木质素纳米颗粒(LNP),以在水中产生胶体稳定的分散体。本论文旨在开发基于LNP的材料,这些材料可用于光子晶体和光热膜用于节能功能材料。论文的第一部分重点是阐明在LNP-Photonic Crystal(L-PC)的离心辅助组装过程中发生的现象。L-PC。在后续工作中,开发了一种改进的方法来提高L-PC的产量。研究了诸如初始木质素浓度以及稀释时间对粒径和稀释时间的影响,并研究了形成的LNP的PDI。经验模型以预测LNP的大小,并成功用于控制L-PC的颜色。此外,研究了L-PC的纳米结构。LNP-Chitosan膜和涂料并将其应用于室内热管理。将LNP含量从10到40 wt%调节。在论文的第二部分中开发了木质素吸收太阳能(光波长:250–2500 nm),基于LNP的复合膜和具有光热性能的涂层的能力。通过合并LNP,与纯壳聚糖膜相比,膜的机械强度和光热性能得到了改善。此外,通过使用LNP作为还原剂制备LNP-Silver-Chitosan(CC-AG@LNP)膜。用紫外线辅助在LNP的表面降低了银离子,并使用杂交纳米颗粒来通过铸造来制备膜。CC-AG@LNP膜表现出改善的湿势,并针对大肠杆菌表现出抗菌性能(灭菌作用> 99.9%)。总的来说,本文既有助于木质素聚集的基本见解,又有助于胶体颗粒的胶合颗粒,并展示了控制其组装并掺入具有附加功能的宏观材料中的方法。
1。简介选择性激光烧结(SLS)是一种添加剂制造(AM)技术,它通过使用激光在每个计算机辅助设计(CAD)文件的切片中使用激光在粉末状聚合物材料的床上选择性地融化3D模型(图。1a)。SLS的常用聚合物是多酰胺11和12粉,使用温度范围为150-185°C [1-2]。Recently semi-crystalline PEEK of varied LS-grade powders with a melting temperature (T m ) of 343-370°C, were heated up to 380°C to be manufactured into 3D objects by a more elaborate high temperature laser sintering (HT-LS) machine and process, affording PEEK components with a glass transition temperature (T g ) of 150°C [3-4].然而,与传统处理的材料相比,这些热塑性聚合物构建的3D物体的强度通常很弱,这是因为它们由AM加工产生的固有较高的孔隙率以及在Z方向上缺乏聚合物链间连接。因此,对于250-300°C的热固性聚合物开发激光烧结过程至关重要,对航空应用使用能力。最近,将热固性二甲酰亚胺树脂与热导电碳微气泡混合在一起,以提高其激光可吸收性以成功激光烧结[5]。为了克服树脂的低粘度,标准的RTM370树脂在300°C进一步加热2-3小时,以通过促进链扩展,同时仍保持融化融化性处理性,从而提高粘度,从而避免在树脂内部反应性PEPA端盖进行广泛的交联。Initially we have attempted to print a melt-processable RTM370 thermoset polyimide oligomer powder terminated with reactive phenylethynylphthalic (PEPA) endcaps by laser sintering into a 3D objects [6], but soon realized the viscosity of the material originally developed for resin transfer molding (RTM) was too low, and the laser seemed only melted the resin without固化反应性PEPA端盖,从而导致带有空隙的标本。进一步上演的RTM370能够以LS的完整性进行3D打印样品(图1b)。
照明,就像一张纸一样。除了节能外,电子纸还具有提供无眩光表面的额外好处,可见性甚至可以改善阳光(与当前在阳光明媚的条件下难以看见的当前发射显示器相比)。[1,2]基于液晶或电子表演的黑色和白色电子纸纸已经是流行的消费产品。但是,开发高色彩纸的颜色更具挑战性。特别是,仅基于环境光的图像生产对最大可能的亮度施加限制。因此,仅优化颜色质量(色度)不足,但是高性能的电子纸也需要高度的绝对反射。[3]最近的研究探索了各种方法,以基于薄膜的结构颜色[4-9]或等离子体[10-15]或介电元面而产生高度反映表面。[16–18]这些系统已与功能材料,如液晶,相变或电致色素材料(以开/关反射表面开关)相结合。[19-23]但是,即使各个区域将提供100%的峰值反射率,使用传统的RGB子像素彼此隔壁创建颜色图像也可以将最大反射率降低至33%,因为每种颜色最多只能占据总面积的三分之一。为了避免此问题,我们需要开发具有可调颜色(单个颜色)的反射像素,而不是依靠带有固定颜色的邻居像素。[3,30–32],例如Peng等。使用已经探索了各种方法,以动态调整光腔和元面的共振和颜色,[1,19,22,24-27],其中有些通过电刺激并调节反射的结构颜色。[25,28,29]其中是使用具有电致色谱特性的材料来调节纳米光腔和等离子装置。利用了聚苯胺的电化学可调折射率(RI),以控制聚合物涂层的等离子等离子金纳米颗粒和金属表面之间形成的间隙等离子体。[33]颜色域和色度通常在此类系统中受到限制,部分是由于RI-TONEABISIS和电染色材料的相对吸收性。最近还提出了用于光腔的颜色调整的无机电色材料(例如氧化钨(WO 3))。[3,34,35]然而,对任何单个WO 3腔结构的调整都不覆盖整个可见范围,[3]主要是因为无机的电染料材料没有足够的RI变化,并且在离子插入时也没有改变其厚度。
就像一张纸一样,电子纸可以用在照明中。除了节能之外,电子纸还具有提供无眩光表面的额外好处,即使在阳光下也能提高可视性(相比之下,目前的发射显示器在阳光充足的情况下很难看清)。[1,2] 基于液晶或电泳显示器等的黑白电子纸已经是流行的消费产品。然而,开发高性能彩色电子纸更具挑战性。特别是,仅基于环境光的图像生成会限制最大亮度。因此,仅仅优化色彩质量(色度)是不够的,高性能电子纸还需要高的绝对反射率。[3] 最近的研究探索了各种方法来创建高反射表面,这些方法基于薄膜腔的结构着色[4–9]、等离子体[10–15]或电介质超表面。 [16–18] 这些系统进一步与液晶、相变或电致变色材料等功能材料相结合,以打开/关闭此类反射表面。[19–23] 但是,即使单个区域可以提供 100% 的峰值反射率,使用彼此相邻的传统 RGB 子像素创建彩色图像也会将最大反射率降低到最多 33%,因为每种颜色最多只能占据总面积的三分之一。为了解决这个问题,我们需要开发具有可调颜色的反射像素(单像素),而不是依赖具有固定颜色的相邻像素。已经探索了各种方法来动态调整光腔和超表面的共振和颜色,[1,19,22,24–27] 其中一些通过电刺激来调节反射的结构颜色。[25,28,29] 其中包括使用具有电致变色特性的材料来调节纳米光腔和等离子体装置。 [3,30–32] 例如,Peng 等人利用聚苯胺的电化学可调折射率 (RI) 来控制聚合物涂覆的等离子体金纳米粒子和金属表面之间形成的间隙等离子体。 [33] 此类系统中的色域和色度通常受到限制,部分原因是 RI 可调性有限,以及电致变色材料的相对吸收性。最近,氧化钨 (WO3) 等无机电致变色材料也被提议用于光学腔的颜色调谐。 [3,34,35] 然而,任何单个 WO3 腔结构的调谐都无法覆盖整个可见光范围,[3] 这主要是因为无机电致变色材料没有提供足够的 RI 变化,并且在离子插入时也不会改变其厚度。为了实现全色调谐,使用
Comparative study on capped SiO 2 and TiO 2 to improve efficiency in plasmonic solar cell through modified synthesis approach P. Sarkar a,* , S. Panda b , B. Maji a , A. K. Mukhopadhyay c a Department of ECE, National Institute of Technology, Durgapur-713209, India b Department of ECE, Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex,印度加尔各答-700074,C Margadarshak(导师),AICTE,新德里-110070,印度这项研究研究了等离激元改善对薄膜A-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Sio2纳米颗粒的光子吸收性特性的等离子增强对光子吸收特性的有效性。它还在暴露于阳光的情况下检查了其J-V特性。修饰的Stober方法用于辐照测试,以SIO2 1st剂量不同剂量的反射率较低:0.485mg/ml,SIO2 2nd剂量:0.693mg/ml和Tio2 1st 1st剂量:0.525 mg/ml,Tio2 2nd dose:0.525 ml,Tio2 2nd dose:0.748 ml g/ml g/ml g/ml g/ml g/ml g/ml ml。基于二氧化硅的太阳能电池显示出2.45%的效率提高,而基于二氧化钛的太阳能电池与未涂层样品相比提高了0.657%的效率。(2023年9月26日收到; 2024年1月3日接受)关键字:等离子体,二氧化硅,钛,太阳能电池1。引言工业革命改变了能源生产,运输和消费,但它会造成环境破坏和诸如化石燃料之类的自然来源的耗尽。过渡到清洁能源(例如核和可再生能源)可以减少碳排放,但是由于放射性废物的半衰期长,安全存储既有挑战性。绿色能源趋势正在增加。太阳能是一种有希望的可再生能源,具有最小的环境影响和高效率。太阳能光伏行业在2022年达到了295 GW创纪录的交付能力,将全球安装的PV总容量增加到1,198以上TW [1]。研发集中于提高光转换效率并降低成本以满足全球能源需求。当前的全球光伏太阳能电池市场为90%的晶体硅,10%由多晶半导体的薄膜组成[2,3]。薄膜光伏电池由于其材料的低含量,柔韧性,易于整合和适合大规模生产的能力而作为替代品生长[4,5]。薄膜氢化的A-SI太阳能电池的制造成本较低,简单过程和与各种底物的兼容性,但缺乏效率。
1。Stolterfoht M,Grischek M,Caprioglio P等。如何量化整洁的钙钛矿膜的效率潜力:隐含效率超过28%的钙钛矿半核对象。ADV MATER。2020; 32(17):2000080。 doi:10.1002/adma.202000080 2。Hages CJ,Redinger A,Levcenko S等。在非理想的半导体中识别实际的少数族载体寿命:Kesterite材料的案例研究。adv Energy Mater。2017; 7(18):1700167。 doi:10.1002/aenm。 2017001673。DeMello JC,Wittmann HF,朋友RH。 改进了外部光致发光量子效率的实验确定。 ADV MATER。 1997; 9(3):230-232。 doi:10.1002/adma.19970090308 4。 Katahara JK,Hillhouse HW。 QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。 J Appl Phys。 2014; 116(17):173504。 doi:10.1063/1.4898346 5。 Braly IL,Dequilettes DW,LM等人的Pazos-Out。 杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。 nat光子学。 2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。2017; 7(18):1700167。 doi:10.1002/aenm。2017001673。DeMello JC,Wittmann HF,朋友RH。改进了外部光致发光量子效率的实验确定。ADV MATER。1997; 9(3):230-232。 doi:10.1002/adma.19970090308 4。 Katahara JK,Hillhouse HW。 QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。 J Appl Phys。 2014; 116(17):173504。 doi:10.1063/1.4898346 5。 Braly IL,Dequilettes DW,LM等人的Pazos-Out。 杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。 nat光子学。 2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。1997; 9(3):230-232。 doi:10.1002/adma.19970090308 4。Katahara JK,Hillhouse HW。 QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。 J Appl Phys。 2014; 116(17):173504。 doi:10.1063/1.4898346 5。 Braly IL,Dequilettes DW,LM等人的Pazos-Out。 杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。 nat光子学。 2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。Katahara JK,Hillhouse HW。QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。J Appl Phys。2014; 116(17):173504。 doi:10.1063/1.4898346 5。Braly IL,Dequilettes DW,LM等人的Pazos-Out。杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。nat光子学。2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。2018; 12(6):355-361。 doi:10。1038/s41566-018-0154-Z 6。Frohna K,Anaya M,Macpherson S等。纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。纳米技术。2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div>wurfelP。辐射的化学潜力。J Phys C:固态物理。rau U.Phys Rev b。1982; 15(18):3967-3985。 doi:10.1088/0022-3719/15/18/012 8。 光伏量子效率与太阳能电池的电发光发射之间的相互关系。 2007; 76(8):085303。 doi:10.1103/physrevb.76.085303 9。 Caprioglio P,Wolff CM,Sandberg OJ等。 关于钙钛矿太阳能电池中理想因子的起源。 adv Energy Mater。 2020; 10(27):2000502。doi:10.1002/aenm.202000202 10。 Sarritzu V,Sestu N,Marongiu D等。 混合钙钛矿中冲击式读取厅和界面重组电流的光学测定。 SCI代表。 2017; 7(1):44629。 doi:10.1038/srep44629 11。 Richter JM,Abdi-Jalebi M,Sadhanala A等。 通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。 nat Commun。 2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-21982; 15(18):3967-3985。 doi:10.1088/0022-3719/15/18/012 8。光伏量子效率与太阳能电池的电发光发射之间的相互关系。2007; 76(8):085303。 doi:10.1103/physrevb.76.085303 9。 Caprioglio P,Wolff CM,Sandberg OJ等。 关于钙钛矿太阳能电池中理想因子的起源。 adv Energy Mater。 2020; 10(27):2000502。doi:10.1002/aenm.202000202 10。 Sarritzu V,Sestu N,Marongiu D等。 混合钙钛矿中冲击式读取厅和界面重组电流的光学测定。 SCI代表。 2017; 7(1):44629。 doi:10.1038/srep44629 11。 Richter JM,Abdi-Jalebi M,Sadhanala A等。 通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。 nat Commun。 2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22007; 76(8):085303。 doi:10.1103/physrevb.76.085303 9。Caprioglio P,Wolff CM,Sandberg OJ等。关于钙钛矿太阳能电池中理想因子的起源。adv Energy Mater。2020; 10(27):2000502。doi:10.1002/aenm.202000202 10。Sarritzu V,Sestu N,Marongiu D等。混合钙钛矿中冲击式读取厅和界面重组电流的光学测定。SCI代表。 2017; 7(1):44629。 doi:10.1038/srep44629 11。 Richter JM,Abdi-Jalebi M,Sadhanala A等。 通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。 nat Commun。 2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-2SCI代表。2017; 7(1):44629。 doi:10.1038/srep44629 11。Richter JM,Abdi-Jalebi M,Sadhanala A等。通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。nat Commun。2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div>Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。J Phys Chem Lett。2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22017; 8(20):5084-5090。 doi:10。1021/acs.jpclett.7b02224 13。Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-2Davies CL,Filip MR,Patel JB等。双分子重组三碘化物钙钛矿是一个反吸收过程。nat Commun。2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22018; 9(1):293。 doi:10.1038/s41467-017- 02670-2
背景:类黄酮菊花会在大鼠中产生快速和持久的抗焦虑和抗抑郁样作用。然而,尚不清楚低剂量和高剂量的克莱辛是否通过伽马 - 氨基丁酸亚型A(GABA A)受体产生差异性抗吸收性效应。因此,这项工作的目的是比较一项纵向研究中的低剂量和高剂量的克莱辛对抑郁症的影响。此外,将克莱辛与血清素能氟西汀和γ-氨基丁酸(GABA)Ergic Allopregnanolone进行了比较,并且还研究了慢性治疗后与GABA A受体的参与。方法:将雄性Wistar大鼠分配为五组(n = 8):媒介物,1 mg/kg chrysin,5 mg/kg chrysin,1 mg/kg氟西汀和1 mg/kg的杂种。在第一个实验中,每天注射治疗,并在治疗的0、1、14和28天和最终治疗后48小时评估对运动活性和强制游泳测试的影响。在第二个实验中,将类似的组用注射1 mg/kg picrototoxin进行28天治疗,以研究GABA A受体的作用。根据实验设计,将方差(ANOVA)测试的单向分析(ANOVA)用于统计分析,p <0.05设置为显着性的标准。结果:在这两个实验中,治疗都没有改变运动活性。然而,在强制游泳测试中,低剂量的克莱辛,异烷醇酮和氟西汀逐渐产生抗抑郁药样作用,并在治疗后48小时维持这种作用,除了低剂量的Chrysin。picrotoxin阻断了低剂量克莱辛产生的抗抑郁药样作用,但不会影响高剂量的克莱辛,异源性异烷醇或氟西汀产生的抗抑郁药。结论:低剂量和高剂量的克莱辛引起的差异抗抑郁样作用是时间依赖的。低剂量的金沙蛋白会产生快速的抗抑郁样作用,而高剂量的克莱斯蛋白会产生延迟但持续的效果,甚至在戒断后48小时。高剂量克莱辛的作用与Allopregnanolone和Fluoxetine观察到的作用相似。低chrysin的抗抑郁样作用的机制似乎是Gabaergic的,而高剂量的Chrysin的作用可能涉及其他与5-羟色胺能系统有关的神经传递和神经调节系统。