在 NIPNE-HH 布哈拉斯特运行的 WILLI 电磁光谱仪装置已被改造,用于测量大气中 μ 子通量的电荷比。实验方法基于对负 μ 子在物质中停止时的有效寿命与正 μ 子的寿命相比的减少的观察。该方法给出了准确的结果,避免了磁谱仪的困难和系统误差,并且详细研究了技术程序,并通过开发紧凑而灵活的测量设备进行了演示。铝被用作最佳吸收材料,这是最大限度地缩短因核俘获而导致的寿命和通过延迟电子与停止 μ 子结合观察到的停止 μ 子率的折衷。本研究主要针对μ子的一个能量范围,为讨论所谓的大气中微子问题和研究大气中微子和反中微子通量提供了重要的信息。两个测量周期得到的结果是:
*电子邮件:firaputri2222222222222222222222222222222222222222222222222222222UN,SOVIAN.ARITONANG@IDU.AC.ID摘要RAM或RADAR吸收材料,是一种旨在吸收雷达或无线电波的物质,以防止其反射回到雷达或敌人的雷达(Ishi等人。2017)。已经对RAM及其组成进行了广泛的研究,特别是以纳米复合材料的形式进行。为了评估RAM的主要材料的有效性,进行了键检验以确定其电磁波吸收能力,称为反射损失测试。此测试量化了材料的吸收能力,其中更负反射损耗值表明上等电磁波吸收。本文献综述探索了可以作为RAM基础的各种纳米复合材料和导电聚合物。值得注意的是,PANI/FE3O4纳米复合材料作为最有效的RAM材料出现,其反射损失最低为-53.7 dB。关键字:RAM,反射损失,纳米复合材料。
摘要:高功率微波 (HPM) 脉冲是一种现代武器,它对社会运作质量有深远影响,因为使用这种武器可能会损坏或毁坏军用和民用的电子设备、计算机和电信系统。防护 HPM 脉冲能量有两种基本方法:使用辐射吸收材料 (RAM) 或人工电磁 (EM) 结构。如果要保护的对象是建筑物,则使用基于 RAM 的保护。因此,本文献综述重点介绍在建筑产品和结构中使用 HPM 能量吸收器的可能性。重点关注四种基本类型的元素:覆层、混凝土和砂浆、小型元素(砖块、空心砌体单元)和油漆涂层。在每一类中,都根据相关文献给出了具有与基本建筑材料结合高潜力的 HPM 辐射吸收器的示例。
摘要:多吡咯(PPY)是一种廉价的导电聚合物,具有有效的存储容量,但其有限的溶解度限制了其生产和应用。因此,为了扩大其应用范围,多功能PPY复合材料的设计和研究引起了极大的关注。PPY/铁基复合材料是通过水热方法,聚合方法和一锅方法等方法制备的。有关PPY/铁复合材料的应用的研究主要集中在电容器,电磁波吸收材料,吸附剂,传感器,药物和催化剂等领域。,它们在超级电容器的电极材料,电磁波的吸收,重金属离子的吸附以及催化降解,展示广泛的应用前景中表现出色。随着制备技术的持续发展和应用领域的进一步扩展,PPY/基于铁的复合材料有望在更多领域中发挥重要作用。关键字:polypyrrole;准备方法;复合材料;应用区域
· 在运输过程中固定好油漆和化学品,避免溢出。· 尽可能使用毒性较小的水性涂料。在标签上寻找“乳胶”或“用水清洗”字样。· 切勿在街道或雨水渠附近清洗油漆刷/滚筒或冲洗油漆容器。· 清洁油性涂料时,过滤并重复使用稀释剂和溶剂。· 使用防水布接住滴落和溢出物。立即用吸水抹布清理溢出物。· 打磨或喷砂去除旧漆时,在工作区域下方铺一块防水布以收集灰尘和油漆碎片。覆盖附近的雨水渠入口,避免使用软管或鼓风机。· 切勿将未使用的油漆丢弃在街道或雨水渠中。· 清扫、吸尘、铲除,并在必要时使用吸收材料收集颗粒废物,而不是
节能源自诸多细节: • 全新独特的螺杆压缩机外形 • 高达 1:5 的超高体积流量控制范围 • 获得专利的吸入锥体,可减少压力损失 • 优化隔音罩内的气流。吸入冷空气,从而提高压缩效率。 • 改进了进气和出气轮廓的技术。它们确保压缩机级内的理想气流,并减少回流损失。 • 优化的标称尺寸,可减少压力损失 • 获得专利的消音器。它完全不使用吸收材料,可将压力损失和管道噪音降至最低。 • 电动隔音罩风扇 • 特殊的消音器绝缘。它代表低隔音罩温度,从而提高压缩效率 • 高级效率(IE3 电机)或超高级效率(IE4 电机) • 即使在压力波动大和入口温度极端的情况下也能稳定运行(例如在夏季或冬季运行) • 皮带传动可精确设计体积流量并快速调节所需的压缩空气
噪音污染被恰当地描述为现代瘟疫之一。[1] 由于嘈杂的环境会对健康产生许多不利影响,从睡眠障碍到心血管疾病,减少人类接触过多噪音对于居住在城市的大量人口的公共健康至关重要。 关于吸音材料,最佳选择取决于预期的声音频率范围; 衰减高频声波的解决方案依赖于与极低频噪声解决方案完全不同的吸收机制。 在室内,最常用的吸音材料本质上是多孔的,因为它们能够以相对较薄的层有效吸收中高频声音。 市场上常见的多孔吸收材料,目标是在 350 Hz 以上吸收超过 90%,包括玻璃棉和矿棉以及由三聚氰胺或聚氨酯制成的吸音泡沫。 在这里,我们回顾了气凝胶的声学特性,并展示了它们挑战和超越当前市场标准的吸收特性的巨大潜力,无论我们谈论的是气凝胶在声学和声学方面的性能。
为了保护放射性来源产生的电离辐射的种群,学者们创建并研究了各种创新的屏蔽材料。伽玛射线和中子的衰减系数表征了辐射被材料吸收的程度[2]。几个过程在电离辐射与物质的相互作用中发生,具体取决于吸收材料的强度和类型。伽玛射线遵循不同的吸收法,并具有更高的渗透率[3]。在核物理学中,辐射在伽马或X射线和中子衰减期间与物质的相互作用很重要。需要选择材料作为X射线和伽马辐射的盾牌时,例如质量衰减系数及其衍生物非常重要[4]。通过质量衰减系数表示伽马(或X射线)与物质相互作用的可能性。在生物,医学,工业和农业领域使用的生物,屏蔽和其他重要材料中伽马和X射线的大规模衰减系数将具有巨大的适用性[5]。研究的目的
摘要圆形极化光(CPL)的全范围,高敏性和可集成检测对于量子信息处理,高级成像系统和光学传感技术至关重要。然而,主流CPL探测器依赖手性吸收材料,因此响应波长有限,反应性低和辨别比不良。在这里,我们通过利用山谷材料观察手性光动量(SAM),提出了手性光检测器。精心设计的中心对称地材料可以保留光学SAM的迹象并高度增强其在近场的强度,作为一种将极化电子注入山谷材料的介质,然后通过Valley Hall效应检测到。这可以通过Valleytronic晶体管在室温下在室温下进行高灵敏度红外CPL检测,并且检测波长扩展到红外线。这种方法为手性光检测打开了途径,并提供了对光电传感中valleytronics潜在应用的见解。
2D 和混合维度 2D/3D 钙钛矿已成为一种比 3D 钙钛矿更稳定、用途更广的太阳能电池吸收材料。[1] 然而,用于实现低维结构的大型有机间隔阳离子的绝缘性质阻碍了光活性材料中光生电荷的迁移。因此,生长具有相对于基底垂直排列的有机片的薄膜对于促进有效的电荷载流子提取至关重要。 [2] 此前,人们曾利用热铸造[3,4] 或通过使用替代溶剂(如 N,N-二甲基乙酰胺 (DMAc))[2] 或添加剂(如硫氰酸铵 (NH 4 SCN)、[5,6] 甲脒氯化物 (FACl)、[7–9] PbCl 2 [10] 和甲基氯化铵 (MACl) [11,12])修改钙钛矿 (PSK) 前体溶液来诱导此类材料的择优取向。