教学大纲 基础博弈论:双人博弈。静态和动态博弈以及一些例子。均衡概念和解决机制 - 纳什均衡、主导/被主导策略、逆向归纳法。寡头竞争:完全竞争和垄断。价格竞争和伯特兰悖论。数量竞争。反应函数。伯特兰与古诺。市场结构分析:描述市场结构:C4 比率、赫芬达尔指数、勒纳指数和市场力量。市场定义 - 技术和解释。勾结:卡特尔和反垄断。卡特尔稳定性和贴现因子。市场动态和勾结稳定性。战略联盟:投资组合测试。战略和商业伙伴关系。互补来源。资源积累。吸收能力。组织设计:组织契合度、战略和结构、职能组织、多部门结构、全球结构。竞争动态:竞争动态、竞争行动、资源相似性、市场共性、意识、动机和能力。战略不对称:规模经济、来源和后果。范围经济:航空枢纽。学习或经验曲线。具有 EoScale/Scope/Learning 的企业战略。先发优势。收益递增的市场结构。价值链分析和垂直关系:双重边际化及其补救措施。垂直排斥。零售商竞争和投资外部性。垂直整合和交易成本:制造或购买。合同。关系特定资产和持有。经济租金和准租金。进入和进入威慑:进入的结构性决定因素。进入壁垒和退出壁垒。进入威慑。识别进入者。研究与开发:市场结构和研发强度。研发竞争。垄断者和进入者的研发激励。研发的风险选择。专利制度的好处。沉睡专利。溢出效应。技术采用:先发制人游戏。期权价值和未来技术世代。技术传播:异质性、流行病和种群生态学方法。网络效应:直接和间接网络效应。系统产品。过剩惯性。过剩动量。具有网络效应的企业战略。标准之战。所有主题均在主题指南中通过专门编写的案例研究进行了补充。
组装纤维和凝胶[6-11]。中,发现具有相互联系的网络结构的多孔材料和聚合物具有相当高的疏水性和含水性的肿胀特性,这是由于其出色的油选择性,非常高的吸收能力,快速动力学,出色的材料可重复性和增强油回收率[12-18]。最近,由于其高疏水性,油性性和商业供应性,基于PDMS的吸收剂被认为是油吸收的潜在候选者[19]。此外,PDMS已用于选择性地将油和/或有机溶剂分离出来[20]。自Wacker Chemie综合了1950年代的第一个硅和1990年代的学术实验室引入[21,22]以来,PDMS是最广泛使用的有机弹性体使用的最广泛使用的有机弹性体[21,22]。PDMS通常是一种粘弹性,具有生物相容性,化学和机械稳健的材料,具有低玻璃过渡温度,成本效益和良好的可塑性,可确保可接受实际用途[23,24]。Si-O-Si骨架质体赋予PDMS弹性体具有吸引人的特性,例如高柔韧性,无毒性,无易受度,非易受度,热电阻和电阻,并且散装密度较低[25]。PDMS在紫外线照射下表现出高透射率和低吸收,适用于理想的光学应用[26]。由于出色的轮廓精度小于10 nm,因此在微技术和纳米技术中广泛利用PDM [22,27]。实心PDMS对大多数水性试剂和酒精溶剂具有抗性。然而,诸如二甲苯之类的有机溶剂会膨胀这种弹性体[28]。同时,它可以渗透到小的无反应蒸气和气体分子(例如水和氧气)[29,30]。此外,原始PDM的表面表现出低表面张力和能量,并且是疏水性的。可以通过大量引入氧血浆处理的羟基来暂时改变润湿性,但由于链迁移而恢复其疏水性能[31]。PDMS表面可以通过血浆氧合,蛋白质吸附或其他功能化学基团的结合来轻松修饰[32,33]。高电负性也可用于沉积相对于电荷的电解质进行亲水性修饰并实现广泛的电气应用[34]。
背景和目标:红树林在通过吸收碳储备来缓解气候变化方面起着至关重要的作用。但是,缺乏有关红树林分布及其碳吸收能力的信息。因此,这项研究旨在通过收集有关红树林地区吸收碳库存的能力的数据来弥合这一差距。具体来说,本研究旨在通过现场调查,异形计算和无人驾驶飞机成像来评估Lantebung红树林生态系统的碳吸收潜力。方法:本研究中采用的方法包括沿Lantebung红树林生态系统内的South Sulawesi Makassar City沿海沿海沿海地区的现场调查,异形计算和多光谱的空中图像处理。进行现场调查,以确定每个红树林架的物种组成并测量其直径在乳房高度处。然后使用异态公式计算红树林生物量,然后将红树林生物量转换为碳库存值。空中图像,然后在归一化差异指数和碳库存值之间进行回归分析,以获得碳库存估计模型。的发现:从多光谱无人驾驶飞机上对红绿蓝色空中图像进行分析的结果为Lantebung红树林地区的红树林植被覆盖范围提供了宝贵的见解,显示出14.18公顷。结论:将无人机用作监测碳库存的技术带来了重大好处。归一化差异植被指数结果表明,红树林的物体在0.21-1的值范围内,分为三个密度类别:高密度和低密度红树林。现场调查证实了Lantebung Makassar中存在三种红树林,即Rhizophora apiculata,Rhizophora Mucronata和Avicennia sp。进行的回归分析是为了评估标准化差异指数价值与碳库存之间的关系,产生了方程模型碳库存= 474.61,植被指数值 + 17.238,线性回归值为0.7945。预计低密度类红树林区域的碳库值在17.24至288.64吨之间,每公顷碳的碳含量在126.04至391.14吨之间,每公顷和高密度的碳含量在126.04至391.14吨之间配备了多光谱传感器的无人机可在许多生态系统中收集有关植被和高度的精确和全面数据。调查和随后的分析强调了Lantebung红树林生态系统中红树林密度的广泛差异。这项研究表明,使用无人驾驶汽车提取的归一化差异指数与从实际田间测量获得的红树林碳含量之间存在很强的相关性。
■ 当前的全球排放量与《巴黎协定》温度目标相一致的减缓路径不符,履行将升温限制在比工业化前水平高 1.5 摄氏度的承诺的时间窗口继续缩小。虽然发达国家和一些发展中国家的排放量似乎已经达到峰值,但全球排放量仍在继续上升,根据政府计划和预测,全球天然气和石油产量将持续增加,直到 2050 年。为了实现全球净零排放,需要在所有部门和背景下进行系统转型,包括采取供需双方措施来抑制排放。■ 为了到 2050 年全球实现净零碳排放,NDC 需要到 2030 年全球排放量在 2019 年的水平上下降 43%,到 2035 年下降 60%——这些阈值目前还无法达到。联合国最新的估计假设全面实施最新的国家自主贡献(并取决于多种因素,例如获得更多财政资源、技术转让和技术合作以及能力建设支持;市场机制的可用性;以及森林和其他生态系统的吸收能力),将导致全球排放量比 2019 年的水平下降 8.2%。 ■ 关于公正和公平的考虑仍将是一个争论的关键点。全球能源转型依赖于国家之间和国家内部的合作。虽然预计到 2030 年能源转型将创造 3.5 倍于其取代的就业岗位数量,但不可避免地会出现经济混乱和流离失所。更大的问题仍然是,哪些国家将从气候变化中获益最多,哪些国家已经付出了巨大的代价。2022 年,全球南方国家仅获得了全球 20% 的清洁能源投资,尽管全球南方许多国家拥有丰富的清洁能源资源。联合国还估计,到 2030 年,全球南方国家可能需要超过 2 万亿美元来应对气候危机。■ 然而,乐观的理由仍然存在:近年来,清洁能源和其他技术的增长取得了惊人的进展,私人和公共投资继续加速。目前每花一美元在化石燃料上,就有 1.7 美元花在清洁能源上,而五年前这一比例是 1:1。公用事业规模的太阳能光伏和陆上风能的容量已经增加,并在许多领域成为具有商业竞争力的传统能源替代品
新冠肺炎疫情在全球突然爆发,导致航空运输量大幅下降。截至 2020 年 4 月,全球航班数量下降近 80%,其中国际航班受影响最为严重 [1]。在各国政府和国际组织(如国际民用航空组织 (ICAO) 和世界卫生组织 (WHO) 等)的共同努力下,航空运输业已逐步复苏,首先是洲内运营 [2]。显然,尽管疫情对航空业的影响将持续数年,预计的航空运输量增长将有所延迟 [3, 4],但随着行业指导的统一和医疗手段的日益有效发展,航空运输将继续逐步恢复。当主流旅行恢复时,航空交通发展、航空交通效率和安全仍将是一个需要考虑的关键问题。在空中交通管理领域,高度复杂的区域之一是终端机动区 (TMA)。作为所有到达航班汇聚的区域,安全问题在飞机运行期间比其他区域更具影响力。众所周知,由于不确定性导致的飞机轨迹变化可能导致潜在冲突,因为协助空中交通管制员决策过程的系统很少考虑此类扰动。因此,空中交通管制员必须根据其经验和直觉干预飞行操作,这进一步增加了他们的工作量并进一步影响了运营效率。空中交通管理部门已经注意到不确定性的潜在影响。在欧洲,单一欧洲天空 ATM 研究 (SESAR) 已明确表示有兴趣在预测准确性方面提高空中交通服务,同时考虑到到达航段的内在不确定性 [5]。为改进轨迹预测,已开展了相关项目,例如 COPTRA 和 TBO-MET,最近还启动了一个名为 START 的新项目,以确保空中交通安全,同时增强发生干扰时的恢复能力 [6]。在此背景下,我们认为未来的系统需要考虑预测误差,因此 TMA 中的到达飞机调度需要同时考虑多种考虑因素,例如不确定性、安全约束和效率。在本文中,我们提出了一种确定稳健到达时间表的新方法,该方法可以潜在地提高对冲飞行运行期间不确定性的能力,同时仍满足安全所需的各种约束。在考虑标称飞机轨迹的预测误差的情况下进行冲突检测和解决。本文组织如下:第 2 部分介绍相关研究摘要。第 3 节描述了模型公式,包括所提出的模型和作为基准的另外两个模型。根据每个模型的特点,分别为所提出的模型和基准模型给出了不同的目标函数。第 4 节介绍了我们解决问题的方法。然后,在第 5 节中,介绍了一个模拟框架,以研究所提出的模型在干扰下的性能。在第 6 节中,说明了计算结果,并比较了基于这三个模型的优化解决方案获得的模拟结果在出现不确定性时的冲突吸收能力。最后,第 7 节总结了本文。
(未经审计) 2024 年 10 月 31 日 2024 年 7 月 31 日 2024 年 10 月 31 日 2023 年 10 月 31 日 2024 年 10 月 31 日 (1) 2023 年 10 月 31 日 (1) 2024 年 10 月 31 日 (1) 2023 年 10 月 31 日 经营业绩(百万美元) 净利息收入 4,923 4,862 4,666 19,252 18,262 非利息收入 3,603 3,502 3,606 14,418 13,952 总收入 8,526 8,364 8,272 33,670 32,214 信贷损失准备金 1,030 1,052 1,256 4,051 3,422 非利息支出 5,296 4,949 5,527 19,695 19,121税费 511 451 135 2,032 2,221 净利润 1,689 1,912 1,354 7,892 7,450 归属于普通股股东的净利润 1,521 1,756 1,214 7,286 6,919 经营业绩 基本每股收益(元) 1.23 1.43 1.01 5.94 5.78 稀释每股收益(元) 1.22 1.41 0.99 5.87 5.72 股本回报率(%)(2) 8.3 9.8 7.0 10.2 10.3 有形普通股回报率(%)(3) 10.1 11.9 8.8 12.6 12.9 生产率(%)(2) 62.1 59.2 66.8 58.5 59.4 营业杠杆 (%) (2) 1.5 (9.3) 净息差 (%) (3) 2.15 2.14 2.15 2.16 2.12 财务状况信息 (百万美元) 现金及金融机构存款 63,860 58,329 90,312 交易资产 129,727 133,999 117,868 贷款 760,829 759,211 750,911 总资产 1,412,027 1,402,366 1,411,043 存款 943,849 949,201 952,333 普通股 73,590 72,725 68,767 优先股及其他权益工具 8,779 8,779 8,075 资产管理规模 (2) 771,454 760,975 673,550 资产管理规模 (2) 373,030 363,933 316,604 资本和流动性指标 普通股一级资本 (CET1) 比率 (%) (4) 13.1 13.3 13.0 一级资本比率 (%) (4) 15.0 15.3 14.8 总资本比率 (%) (4) 16.7 17.1 17.2 总损失吸收能力 (TLAC) 比率 (%) (5) 29.7 29.1 30.6 杠杆率 (%) (6) 4.4 4.5 4.2 TLAC 杠杆率 (%) (5) 8.8 8.5 8.6 风险加权资产(百万美元) (4) 463,992 453,658 440,017 流动性覆盖率(LCR)(%)(7) 131 133 136 净稳定资金比率(NSFR)(%)(8) 119 117 116 信用质量 净减值贷款(百万美元) 4,685 4,449 3,845 信贷损失准备金(百万美元)(9) 6,736 6,860 6,629 总减值贷款占贷款和承兑汇票的百分比(2) 0.88 0.84 0.74 净减值贷款占贷款和承兑汇票的百分比(2) 0.61 0.58 0.50 信贷损失准备金占平均净贷款和承兑汇票的百分比(年化)(2)(10) 0.54 0.55 0.65 0.53 0.44 不良贷款损失准备占平均净贷款的百分比
急性肾脏损伤(AKI)是一种普通综合征,其患病率在全球范围内增加,并且与高死亡率和发病率相关[1-3],部分是由于不足和/或延迟识别[1]。标准化诊断并改善结果统一的AKI和肾功能基线的统一发表在“肾脏疾病:改善全球结果”(KDIGO)[4]中。但是,在日常临床实践中,解释仍存在一些差异,这挑战了均匀的临床途径和早期干预。在一项人口研究中,有21%的患者在住院期间开发了AKI,发现AKI越严重,死亡和院内死亡的风险更大[5]。此外,患有AKI的患者住院时间更长,医院再入院增加。此外,与第一集相比,在中位数为0.6年之内,AKI发作的患者在中位数中被AKI的重新入院的风险近30%[6]。此外,患有AKI的患者随后患有慢性肾脏疾病(CKD)的风险增加[3,7]。在一项研究中证明了AKI早期识别和确保干预的价值,在该研究中,电子实验室结果系统向工作人员提醒肌酐(CR)的急性变化(CR)和随后的AKI风险[8]。这导致了AKI的更快,更好的管理,减少了医院的住院时间并提高了死亡率。总体而言,这突出了对AKI的改进和简化认识的需求和价值。由于功能生物标志物的固有延迟和局限性,例如PCR [9]替代性损伤生物标志物,其反应比功能性生物标志物更快[10]。铁结合21–25 kd lipocalin蛋白质中性粒细胞明胶酶 - 脂肪蛋白(NGAL)是一个肾脏损伤生物标志物。在AKI事件后,Ngal在Henle环的管状上皮表达,并在肾脏中收集管道。在肾脏中,NGAL表达会响应有害刺激,例如,渗透 - 重新灌注损害和易感AKI的条件[11]。可以在AKI事件[12]的六个小时内检测到血浆NGAL(PNGAL)的水平,并且PNGAL和尿液NGAL(UNGAL)的浓度似乎与肾小管损伤的程度相关,表明肾脏功能的程度[13,14]。ngal表示肾细胞对固有的AKI事件的响应。在AKI中,血浆NGAL水平的升高主要是由于急性管状损伤,全身性炎症和吸收能力降低而迅速诱导NGAL表达和NGAL释放,从而导致血浆和尿液中的清除和积累。在AKI的急性阶段,NGAL的清除率降低起较小的作用。相比之下,在CKD中,长时间的过滤障碍导致血浆中NGAL的逐渐积累(由于过滤和排泄降低),水平与疾病的严重程度和肾功能下降相关。在CKD中,肾脏NGAL合成没有/更少的增加。因此,PNGAL清除与肾脏功能状态密切相关,并在AKI和CKD环境中都是肾脏损伤的敏感标志[15]。
Akshay Mehta,Alkesh Yadav,Aman Kumar,Kanika和Manish doi:https://doi.org/10.33545/26174693.2024.v8.i1i.i1i.481摘要纳米型,高级纳米型的造型,并具有较高的造型,并具有较高的构造。 管理。纳米颗粒由于其独特的特性,在作物改善和保护方面提供了创新的解决方案。纳米材料(例如纳米肥料)提高了养分的吸收效率,降低了环境影响并优化了资源利用。同样,纳米药物在害虫和疾病管理中表现出增加的功效,从而减少了对常规化学处理的需求。纳米技术在植物生长调节中也起着关键作用。纳米级输送系统可以控制生长调节器的控制释放,从而促进了植物发育和开花的精确调节。这种目标方法可以提高作物的产量和质量,同时最大程度地减少环境影响。此外,纳米传感器为对环境参数的实时监控做出了贡献,为精确农业提供了宝贵的见解。基于纳米材料的传感器检测土壤水分,养分水平和植物健康的变化,从而及时进行干预以进行最佳的作物管理。尽管有希望的应用,但纳米技术在园艺中的整合仍面临与环境影响,道德考虑和监管框架有关的挑战。解决这些问题对于确保农业中纳米技术的负责任和可持续部署至关重要。纳米技术在园艺中的作用是动态的和广泛的。从增强营养管理到革命性的害虫控制和生长调节,纳米技术具有巨大的潜力,可以推进园艺系统的可持续和有效实践。然而,考虑道德,环境和监管方面,平衡方法至关重要,以利用全部利益,同时减轻园艺中与纳米技术相关的潜在风险。本评论的重点是纳米技术在园艺中的作用。关键词:纳米技术,纳米颗粒,功效,纳米传感器引言全球人口正在稳步增加,在满足全球对当前和未来对食品的需求方面构成了重大挑战。为了应对这一挑战,迫切需要增加农作物的产量,估计表明增加了70%。虽然传统的肥料在支持农民方面发挥了作用,但发现其密集使用会对土壤质量产生不利影响,并对人类健康和环境构成风险。农业部门的发展取决于提高资源效率并明智地采用现代技术。纳米技术是增强农业可持续性,尤其是发展中国家的有前途的途径。纳米结构配方采用有针对性的递送,缓慢/受控的释放和有条件的释放机制,响应生物学需求并可能改变农业系统。nanoferizers,例如Zn,Cu和Fe,解决土壤固定的挑战并优化光合效率。肥料的纳米大小可增强纳米级植物毛孔的养分利用率,从而提高了营养利用效率。纳米颗粒有助于更快的种子发芽,农业产量升高和叶绿素含量改善,从而通过有效吸收来促进植物的生长(Hayat等,2023)[14]。在纳米肥料中发现了纳米技术的显着应用,从而增强了植物的营养吸收能力。研究表明,纳米肥料的使用可提高养分利用效率,减轻土壤毒性,减少过量药物的不良反应,并降低所需治疗的频率(Ditta,2012)[9]。在追求可持续农业时,纳米技术具有巨大的潜力,提供了创新的解决方案来解决粮食生产和环境影响的复杂性(Shilpa等,2022)[34]。
图 1. 通货膨胀率居高不下 10 图 2. 平均收入快速增长 12 图 3. 罗马尼亚未能实现净零排放 13 图 1.1. 生活水平低于大多数经合组织国家 18 图 1.2. 贫困风险高 18 图 1.3. 家庭能源消耗增加 19 图 2.1. GDP 增长放缓 22 图 2.2. 资本密集度低但在增加 24 图 2.3. 移民有助于填补职位空缺但工资压力很大 25 图 2.4. 汇率稳定但通胀率居高不下 28 图 2.5. 信贷增长放缓 30 图 2.6. 过去一年以欧元计价的企业贷款增加 30 图 2.7. 私人债务低且几乎所有家庭都拥有住房 31 图 2.8. 银行业指标健康 32 图 2.9.国家风险溢价升高 33 图 2.10。尽管支出较低,但财政立场正在收紧但仍然过于宽松 34 图 2.11。人口老龄化将侵蚀劳动力供应并增加财政压力 38 图 2.12。老年贫困风险接近欧盟平均水平,但仍然很高 39 图 2.13。名义 GDP 的快速增长减轻了 2022 年的债务负担 41 图 2.14。政府总债务情景(马斯特里赫特定义) 42 图 2.15。税收收入低,严重依赖社会缴款 43 图 2.16。增值税缺口很大 44 图 2.17。在罗马尼亚的统一税制下,低收入工人的税收负担很重 45 图 2.18。在罗马尼亚,工资税比资本收入征税重得多 46 图 2.19。罗马尼亚的有效企业所得税税率较低 48 图 3.1。生产率增长已从疫情前的速度放缓 54 图 3.2。大量欧盟资金将考验罗马尼亚的吸收能力 57 图 3.3。银行账户拥有率低表明罗马尼亚金融体系利用不足 58 图 3.4。罗马尼亚的农业产业分散,拥有大量自给性农场 61 图 3.5。腐败率仍然很高 65 图 4.1。提高教育公平性将有助于减少贫困 72 图 4.2。不同地区的劳动力市场结果和生活水平不同 75 图 4.3。性别就业差距在育龄阶段达到顶峰 77 图 4.4。留给父亲的假期相对较少 78 图 4.5。有孩子的在职父母使用育儿假的说明性示例 79 图 4.6。母亲就业率低 81 图 4.7. 由于国家对儿童保育的支持有限,非正式安排很常见 82 图 4.8. 一些职业的性别集中度相当高 83 图 4.9. 在商业经济中,男性比女性挣得更多 84 图 4.10. 兼职工作并不常见 85 图 5.1. 碳密集型能源推动了罗马尼亚经济的温室气体排放强度 90 图 5.2. 罗马尼亚近年来在减少温室气体排放方面的进展有所放缓 92 图 5.3.罗马尼亚的能源结构依赖于化石燃料,并产生大部分温室气体排放 93 图 5.4。罗马尼亚未能按计划实现其 2030 年和 2050 年的气候缓解目标 94 图 5.5。罗马尼亚的复苏和复原力计划侧重于交通脱碳和提高能源效率 97 图 5.6。气候政策已变得更加严格,但可以更好地采用基于市场的缓解方法 99 图 5.7。罗马尼亚的隐性碳税是欧洲最低的,且不同燃料之间的碳税不均衡 101 图 5.8。能源税收入随着燃料使用而增长,在总税收中占很大比例 102 图 5.9。越来越多的人口无力支付能源费用 104 图 5.10。罗马尼亚的大部分电力仍然来自燃烧化石燃料 106 图 5.11。电力在罗马尼亚的最终能源使用中仍然发挥着相对较小的作用 106 图 5.12。煤电发电量下降,必须逐步淘汰 107 图 5.13. 可再生能源投资停滞,需要加速 109 图 5.14. 冗长的许可流程减缓了可再生能源的部署 110
o 先天性代谢错误,例如苯丙酮尿症 (PKU)、枫糖尿病、高胱氨酸尿症、甲基丙二酸血症、丙酸血症、异戊酸血症和其他亮氨酸代谢紊乱;戊二酸尿症 I 型和酪氨酸血症 I 型和 II 型;以及尿素循环障碍);或 o 年龄小于 24 个月的慢性肾病 (CKD) 2 至 5 期(或接受透析治疗);或 o 克罗恩病;或 o 严重吸收不良综合征(例如囊性纤维化、短肠综合征或肠衰竭);或 o 营养不良,或者如果不进行营养治疗,个人将营养不良或患有严重疾病,例如身体残疾、智力残疾或死亡;或 o 严重食物过敏,包括嗜酸性食管炎和其他形式的嗜酸性胃肠道疾病,如果不及时治疗,将导致危及生命的过敏反应、营养不良或死亡(轻度和中度食物过敏或食物不耐受通常可以用食品商店和药房中随时可买到的配方奶粉或精心选择食物来治疗;治疗此类疾病的配方奶粉不被视为医学必需品);或 o 伴有发育停滞的胃食管反流 注:有关承保限制和除外责任的更多信息,请参阅福利注意事项部分。 定义 先天性代谢错误:先天性代谢错误是一组导致代谢途径受阻,从而导致临床上严重后果的疾病。例子包括:苯丙酮尿症 (PKU)、苯丙酮尿症、枫糖尿病、同型胱氨酸尿症、甲基丙二酸血症、丙酸血症、异戊酸血症和其他亮氨酸代谢紊乱;戊二酸尿症 I 型和酪氨酸血症 I 型和 II 型;以及尿素循环障碍(美国国家人类基因组研究所网站,2013 年)。智力障碍:智力障碍 (ID) 是一种神经发育障碍,其特征是智力功能和适应功能缺陷,发病于发育期 (Purugganan, 2018)。医疗食品:在医生监督下配制用于食用或肠内给药的食品,旨在用于对疾病或病症进行特定的饮食管理,针对该疾病或病症,根据公认的科学原理,通过医学评估确定独特的营养需求。一种食品只有在满足以下条件时才可称为(医疗食品):• 它是专门配制和加工的产品(与天然状态下使用的天然食品相反),用于通过口服或管饲的方式为患者进行部分或全部喂养;• 它旨在用于由于治疗或慢性医疗需要而导致摄取、消化、吸收能力有限或受损的患者的饮食管理,或代谢普通食物或某些营养素,或有其他特殊的医学确定的营养需求,其饮食管理不能仅通过改变正常饮食来实现;• 它提供专门为管理由特定疾病或病症导致的独特营养需求而修改的营养支持,由医学评估确定;• 它旨在在医疗监督下使用; • 仅适用于正在接受主动和持续医疗监督的患者,即患者需要定期接受医疗护理,其中包括有关使用医疗食品的说明(《联邦法规》21 CFR 101.9(j)(8) 医疗食品不同于更广泛的特殊膳食食品类别和声称有健康功效的食品,因为医疗食品必须在医疗监督下使用。 “医疗食品”一词并不涵盖所有喂给病人的食品。 医疗食品是专门为重病患者或需要将产品作为主要治疗方式的患者配制和加工的食品(与天然状态下使用的天然食品相反)。典型的医疗食品是肠内营养产品,即通过胃肠道提供、口服或通过将营养物质输送到口腔以外或直接输送到胃的管子或导管提供的产品(美国食品药品监督管理局,2006 年)。专用营养配方:为满足特定疾病状况的独特营养需求而生产的配方。适用代码:以下程序和/或诊断代码列表仅供参考,可能并非全部。本保单中列出的代码并不意味着该代码所描述的服务是否在承保范围内。医疗食品是专门为重病患者或需要将其作为主要治疗手段的患者配制和加工的食品(与天然状态下使用的天然食品不同)。典型的医疗食品是肠内营养产品,即通过胃肠道提供、口服或通过导管将营养物质输送到口腔以外或直接输送到胃部的产品(美国食品药品监督管理局,2006 年)。特殊营养配方:为满足特定疾病状况的独特营养需求而生产的配方。适用代码以下程序和/或诊断代码列表仅供参考,可能并不全面。本政策中列出的代码并不意味着该代码所描述的服务是承保的或未承保的医疗食品是专门为重病患者或需要将其作为主要治疗手段的患者配制和加工的食品(与天然状态下使用的天然食品不同)。典型的医疗食品是肠内营养产品,即通过胃肠道提供、口服或通过导管将营养物质输送到口腔以外或直接输送到胃部的产品(美国食品药品监督管理局,2006 年)。特殊营养配方:为满足特定疾病状况的独特营养需求而生产的配方。适用代码以下程序和/或诊断代码列表仅供参考,可能并不全面。本政策中列出的代码并不意味着该代码所描述的服务是承保的或未承保的
