例如,图 1 显示,在尼日利亚,在六个重叠调查期中的五个期间,接受度估计值相差 17 到 22 个百分点。即使在使用相同访谈模式(互联网)的调查中,2021 年第 2 季度的估计值也相差 18 个百分点。只有在一个重叠调查期内,接受度估计值相对接近:2021 年第 4 季度,使用呼叫列表招募和 CATI 访谈的调查(呼叫列表-CATI)的估计值与使用社交媒体招募和互联网访谈的调查(社交媒体-互联网)的估计值相差在 4 个百分点以内。2021 年第 2 季度的情况并非如此,当时这些调查的估计值相差 16 个百分点,这表明除了招募方法和访谈模式外,调查时间也可能影响接受度估计值。
调查模式:[a] 随机数字拨号;[b] 计算机辅助电话访谈;[c] 交互式语音应答。调查项目名称:[1] 非洲疾控中心疫苗认知调查;[2] 世界银行高频电话调查;[3] 中低收入小组研究;[4] 新冠肺炎循证应对伙伴关系;[5] 联合国儿童基金会社区快速评估;[6] 冠状病毒疫苗研究;[7] 新冠肺炎趋势和影响调查。† 阿拉伯晴雨表在疫情初期(2020 年)使用电话调查收集数据,并在 2021-2022 年过渡到家庭面对面调查。附录表 7 提供了此表的扩展版本。
摘要:向地质储存地点注入气体,将现有的岩孔空间中的水取代,触发了横向继发物。这种现象涉及从水饱和度较高的地区迁移以补充流离失所的水。这种吸收发生的横向距离对于理解氢和二氧化碳地质储存期间的注射/戒断流量和捕获加气饱和至关重要。本研究研究了考虑压力和温度效应,研究了方解石(代表碳酸盐)和玄武岩的氢和二氧化碳系统中的二级吸收动力学。利用经过改进的卢卡斯 - 瓦什本方程,结果表明,所有气体和岩石系统的横向距离和二次吸收率随压力而下降。此外,碳酸盐和玄武岩的氢系统水的横向距离和二次吸收率,以及碳酸盐的二氧化碳系统,随温度的增加。然而,在玄武岩下的二氧化碳系统的横向距离和二次吸收率随温度而降低。这项研究提供了至关重要的基本数据,对地下氢存储和二氧化碳地质储存具有重要意义。这些发现有助于理解碳酸盐和玄武岩岩石中的侧向吸收,从而提供了有价值的见解,以增强孔隙空间内的气体保留率,从而影响残留的捕获。
农业活动是影响气候的温室气体排放的重要来源,例如牲畜耕作,肥料管理,化肥的使用和土地使用变化。但是,农业用地和森林地区在吸收和隔离温室气体方面也起着至关重要的作用。森林地区是特别有效的碳汇。森林中的树木和植被通过光合作用从大气中吸收二氧化碳,并以生物质形式储存碳。森林土壤在储存碳中含有有机物掉落到地面的碳中起作用。尽管农业地区吸收温室气体的潜力比森林地区较少,因为从森林到农业土地的土地利用变化减少了碳固执,但如果实施可持续的农业实践,农业地区仍然可以在温室气体隔离中发挥作用。这些做法包括耕作,覆盖作物,适当的土壤管理以及在综合农业系统中种植多年生树。这项研究的目标是:1)评估农业地区和红树林的温室气体吸收能力,这是维持气候平衡的关键因素。2)提高社区对资源和环境管理的认识。
抽象增加了水溶性药物不良的渗透性,对口服药物递送构成了重大挑战。常规的溶解技术,例如固体分散和环脱纤维化剂,虽然能够改善药物溶解,但在随后的配方处理中遭受了极大的困境。一种新颖的“粉末溶液技术”,液化技术,在处理药物溶解和口服“问题”药物的制定方面已成为最前沿的。液化技术涉及将液体药物吸附到合适的载体和涂料上,然后转换为自由流动,看起来干燥和可压缩粉末。在液化系统中,该药物分散在几乎分子状态下,这极大地有助于药物溶解和吸收。本评论旨在介绍液化技术的基础知识,并更新液化处理的概念以扩大其应用程序。详细讨论了现代药物发现的趋势,药物溶解方法,液化技术在配方创新中的应用,配方组成和液化系统的设计。特别强调了液化技术溶解不良的液化和生物利用度的应用。积累的证据表明,液化技术具有改善口服输送和促进不溶性药物的二次发展的巨大潜力。
作者:Daisuke Shimamura,Tomoaki Ikeuchi,Ami Matsuda,Yoshinori Tsuji,Hideya Fukuzawa,Keiichi
3数据分析19 3.1数据收集。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 3.1.1 PV电源输出数据。。。。。。。。。。。。。。。。。。。。。。。。。。20 3.1.2历史天气数据。。。。。。。。。。。。。。。。。。。。。。。。。20 3.1.3数值天气预测数据。。。。。。。。。。。。。。。。。。。21 3.2数据预处理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23 3.2.1 PV电源数据集清洁过程。。。。。。。。。。。。。。。。。。。23 3.2.2历史天气数据集清洁过程。。。。。。。。。。。。。。24 3.2.3反弹NWP数据集清洁过程。。。。。。。。。。。。。。。。。24 3.2.4 Meteomatics NWP数据集清洁过程。。。。。。。。。。。。。。27 3.2.5数据转换。。。。。。。。。。。。。。。。。。。。。。。。。。。27 3.3探索性数据分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 3.3.1实际与预测的天气参数。。。。。。。28 3.3.2 PV功率与预测辐照度。。。。。。。。。。。30 3.3.3功能工程。。。。。。。。。。。。。。。。。。。。。。。。。。。32
1极端条件的联合实验室重要的特性,制造过程测试技术的关键实验室,教育部,国家主要的能源材料的国家主要实验室,西南科学技术大学,Mianyang 621010,中国2个物理与电子学院,中国北部大学,中国北部大学,中国北部大学,jandsha 410083,j ghandsha 410083,j Chandsha 41008 3 434023,中国; shubocheng@yangtzeu.edu.cn 4 416000 Jishou University,Jishou 416000,中国5物理学系,金宗大学,金宗大学,Jinzhong 030619,中国; phys.zhangjg@gmail.com 6物理学学院,吉安根技术大学,杭州310023,中国; chaojuntang@126.com 7 Guangxi精密导航技术与应用主要实验室,Guilin电子技术大学,Guilin 541004,中国8号物理与电子信息工程学院,荷西工程大学,小号432000,中国432000,中国); yougenyi@csu.edu.cn(y.y。);电话: +86-0816-2480830(Z.Y。)†这些作者为这项工作做出了同样的贡献。
聚合物血管生物可吸收支架 (BRS) 已广泛用于治疗冠状动脉疾病。而增材制造 (AM) 正在通过实现具有高度复杂结构的患者专用支架来改变医疗保健领域的格局。然而,使用聚合物 BRS 存在挑战,特别是支架内再狭窄 (ISR),与其较差的机械性能有关。因此,本综述的目的是概述在开发旨在满足机械和生物要求的聚合物 BRS 方面的最新进展。首先,重点介绍并简要描述了适用于 BRS 的生物聚合物以及形状记忆聚合物 (SMP)。其次,除了引入有效的机械超材料(例如负泊松比 (NPR) 结构)之外,还讨论了不同类型的血管支架设计结构。随后,讨论了目前用于制造聚合物 BRS 的 AM 方法,并将其与传统制造方法进行了比较。最后,针对实现新一代 AM BRS 所面临的现有挑战,提出了未来的研究方向。总体而言,本文为未来的心血管应用提供了基准,尤其是通过选择合适的聚合物、设计和 AM 技术来获得临床上可行的聚合物血管支架。
在本文中,我们描述了一种基于我们之前开发的光子谐振吸收显微镜 (PRAM) 的生物传感仪器,该仪器结合了自动对焦、金纳米粒子 (AuNP) 积累的数字表示以及收集 AuNP 附着和脱离光子晶体 (PC) 表面的时间序列图像序列的能力。这些组合功能用于在生物分子分析过程中完全自动化 PRAM 图像收集,从而能够平铺 PRAM 图像以提供毫米级视野。该仪器还可以收集 PRAM“电影”,从而实现数字展示和动态计数 AuNP 到达和离开 PC 表面时的情况。我们在两种生物分子分析中利用这些功能来检测传统 AuNP 标记夹层格式的蛋白质生物标志物。利用测定过程中 AuNP 附着和分离事件的动态计数,我们提出了一种 10 分钟、室温、无酶方法检测低至 1 aM 的 microRNA-375 (miRNA- 375) 的方法,同时揭示了生物分子相互作用的结合率和解离率的特征。我们的仪器可能在多路复用即时诊断测试中得到广泛应用,并可作为以单分子分辨率定量表征生物分子结合动力学的通用工具。