许多研究人员已经在使用敏感材料来提高太阳能蒸馏器的性能,但只有少数研究人员使用铁砂作为单盆太阳能蒸馏器中的吸热器来提高性能,正如本实验所证明的那样。这项研究是在 2018 年 8 月至 9 月期间进行的,使用了四个太阳能蒸馏器,尺寸为 420 毫米 × 305 毫米,盖子的坡度为 30 度。其中三个太阳能蒸馏器中含有 20 毫米高的铁砂。三个太阳能蒸馏器中的水位分别为 15 毫米(V1)、20 毫米(V2)和 25 毫米(V3),这样水面分别为:低于铁砂表面、与铁砂表面相同水平和高于铁砂表面。第四个太阳能蒸馏器仅装有 20 毫米(P)的水,是其他蒸馏器的基准。从结果中,我们推断铁砂吸收的热量提高了太阳能蒸馏器内部的总传热系数。这一结果与太阳能蒸馏器的火用和总效率一致。结果表明,通过增加 V1、V2 和 V3 相对于 P 产生的淡水分别为 1.5%、51.8% 和 57.1%。因此,我们得出结论,铁砂显著提高了太阳能蒸馏器的生产率。当水面高于铁砂表面时,效果最佳。关键词:海水淡化;太阳能蒸馏器;铁砂,多孔介质版权所有 © 2020 PENERBIT AKADEMIA BARU - 保留所有权利
随着发展中国家生活质量的提高和全球变暖,全球对空调的需求正在迅速增加。政府间气候变化专门委员会(IPCC)估计,仅住宅空调的需求就将从 2000 年的每年 300 太瓦时 (TWh/年) 上升到 2050 年的 4000 和 2100 年的 10,000(Henley 2015)。其他估计预测,制冷需求将在 2070 年左右超过供暖需求,如图 1 所示(Isaac and van Vuuren 2009)。空调系统的能源成本可能非常高,特别是在岛屿地区,由于依赖液体化石燃料作为主要发电资源,电力成本通常很高。位于温跃层之下的深海是一个几乎无限的吸热器(冷却源),为在海边开发成本较低的区域制冷系统创造了机会。海水空调 (SWAC) 是一种区域冷却技术,利用深层冷海水进行冷却,即使在热带地区,深层冷海水的温度也可低至 3 – 5 °C (美国国家海洋和大气管理局,2018 年),如图 2 所示。人们广泛研究了海洋表面和深层海洋之间的温差,以用于发电和海水淡化目的 (Khosravi 等人,2019 年;Jung 和 Hwang,2014 年;Semmari 等人,2012 年;Odum,2000 年)。SWAC 于 1970 年代开始被考虑,并在 1990 年代初获得了发展势头。它适用于热带和赤道地区,这些地区海底水深测量允许使用相当短的冷海水引水管道 (Syed 等人,1991 年)。 SWAC 取代了传统空调系统中使用的冷却器,大大降低了电力消耗和制冷成本(Makai Ocean Engineering 2015 )。SWAC 系统的电力成本通常比传统空调系统低 80%(Van Ryzin and Leraand 1991;Van Ryzin and Leraand 1992 ),约占 SWAC 总项目成本的 20%(拉丁美洲发展银行 2015 )。这些制冷需求项目应尽可能大,目的是通过规模经济降低项目总成本