人机协作是许多领域中一种很有前途的范例,因为它有可能充分利用人类的灵活性和机器人的精确性 (Reason, 2000)。即使有了极其复杂和高度发展的技术,机器人系统也主要由人类操作,干预和控制程度也各不相同 (Power 等, 2015)。然而,需要外科医生远程操纵机械臂的遥控控制可能会带来诸如模糊性和缺乏运动反馈等问题 (Chen 等, 2007),从而导致过度的心理工作负荷 (MWL),进而影响外科医生的表现。由于极端的 MWL 会降低性能并增加错误概率 (Yurko 等, 2010),操作员的工作负荷正成为决定人机协作是否成功的核心问题。因此,人们对开发能够在任务执行期间根据操作员的 MWL 为其提供不同程度协助的机器人的兴趣日益浓厚 (即基于心理工作负荷的自适应自动化) (MWL-AA)。
在 ESC/BSG 系统中,冷却气体(氦气)的漏流被测量为夹紧性能的标准:大量的 BSG 漏流意味着晶圆未正确夹紧,因此冷却气体未到达晶圆。相反,少量的漏流代表晶圆夹紧良好且冷却效率高。在这种情况下,20 sccm 或以上的氦气流量代表夹紧彻底失败以及工具故障。图 2 显示在“A”和“B”型载体上制备的样品晶圆的冷却气体漏流。在所有施加电压下,弯曲程度较高的晶圆的 BSG 流量最高,漏流值已达到最大值 20 sccm。但是,只要背面冷却气体压力较低,较高电压条件就会消除弯曲对 BSG 流量的影响。换句话说,需要将 BSG 压力降低至约 10 Torr 以下才能夹住弯曲的晶圆,这会导致背面冷却系统的边缘性更严格,并且等离子蚀刻等高温工艺中晶圆过热的可能性更高。