在施工活动开始之前,CTR 应准备马里兰州环境部 (MDE) 要求的所有空气许可证申请。所有申请应在提交给 MDE 之前同时提交给 CO(R) 和 11 CES/CEIE 进行审查和批准。CTR 应确保有足够的时间准备和提交许可证申请,以避免对其项目造成任何不利影响和/或延误。CTR 应负责支付所有适用的许可证费用。排放:-固定式内燃机的可见排放量不得超过怠速发动机的 10% 和可见排放量的 40%。COMAR 26.11.09.05 B (4) 中的例外情况。-燃料燃烧设备不得排放可见排放物。CNTR 不得在基地的任何地点进行露天燃烧。-CTR 不得在任何铺路作业中使用或应用稀释沥青,但 COMAR 26.11.11.02 (C) 中指出的情况除外。 -CTR 应采取适当措施,尽量减少粉尘排放。应使用抑尘剂处理现场和未铺砌通道上的土壤。不允许使用干式电动扫帚和吹气。所有砖石切割(如混凝土、混凝土块、石材等)均应使用湿式切割。CTR 应在喷砂作业下方和周围提供防水布和挡风玻璃,以限制和收集灰尘、沙子、油漆和其他碎屑以供处理。”
在不安装此警报以获得最佳性能的地方,建议您避免在这些区域安装烟雾报警器:•在车库,炉房,爬行空间和未完成的阁楼中。避免极度灰尘,脏或油腻的区域。•生产燃烧颗粒的地方。燃烧时会形成燃烧颗粒。避免的区域包括通风不良的厨房,车库和炉间。(如果可能,请保持至少20英尺(6米)的单位(6米)(炉子,炉子,热水器,空间加热器)。在不可能使用20英尺(6米)距离的区域(例如,在模块化,移动或较小的房屋中),建议将烟雾报警到尽可能远离这些燃油燃料来源的地方。放置建议旨在将这些警报保持在距燃油燃料源的合理距离上,从而减少“不必要的”警报。如果将烟雾警报直接放在燃油源旁边,可能会发生不需要的警报。尽可能地通风。•在任何烹饪设备的5英尺(1.5米)内。在厨房附近的空气流中。气流可以将烹饪烟雾吸入烟雾传感器中,并引起不必要的警报。•在极度潮湿的地区。此警报应至少有10英尺(3米),距淋浴,桑拿浴室,加湿器,蒸发器,洗碗机,洗衣房,杂物间或其他高湿度来源。•在直射的阳光下。•在湍流的空气中,例如靠近吊扇或开放的窗户。吹气可能会防止烟雾到达传感器。
在不安装此警报以获得最佳性能的地方,建议您避免在这些区域安装烟雾/CO警报:•在车库,炉间,爬行空间和未完成的阁楼中。避免极度灰尘,脏或油腻的区域。•生产燃烧颗粒的地方。燃烧时会形成燃烧颗粒。避免的区域包括通风不良的厨房,车库和炉间。(如果可能,请保持至少20英尺(6米)的单位(6米)(炉子,炉子,热水器,空间加热器)。在不可能使用20英尺(6米)距离的区域(例如,在模块化,移动或较小的房屋中),建议将烟雾报警到尽可能远离这些燃油燃料来源的地方。放置建议旨在将这些警报保持在距燃油燃料源的合理距离上,从而减少“不必要的”警报。如果将烟雾警报直接放在燃油源旁边,可能会发生不需要的警报。尽可能地通风。•在任何烹饪设备的5英尺(1.5米)内。在厨房附近的空气流中。气流可以将烹饪烟雾吸入烟雾传感器中,并引起不必要的警报。•在极度潮湿的地区。此警报应至少有10英尺(3米),距淋浴,桑拿浴室,加湿器,蒸发器,洗碗机,洗衣房,杂物间或其他高湿度来源。•在直射的阳光下。•在湍流的空气中,例如靠近吊扇或开放的窗户。吹气可能会阻止CO或吸烟到达传感器。•在温度低于40°F(4.4˚C)或高于100°F(37.8˚C)的区域。这些区域包括非垂直的爬网空间,未完成的阁楼,未隔离或隔热的天花板,门廊和车库。•在昆虫感染的地区。昆虫可以将开口堵塞到传感室。•距离荧光灯不到12英寸(305毫米)。电气“噪声”会干扰传感器。•在“死空气”空间中。
有效储存150组成型数据(如时间、次数、压力、速度、行程、计量、模厚、模具名称、选用条件、原料温度等)。 在线操作详细提示。 采用分级加密锁定软件数据。 输入数据时有防错提示,以防修改不当。 数据修改可通过iChen系统在线保存在中央服务器。 最先进的SMT电板组装技术,可靠性高。 64位高速CPU。 10组PID温控,在30℃~500℃之间调节,精度高。 冷启动预防、、、、、自动预热功能、、、、、喷嘴堵塞报警、、、、、树脂溢流检测。。。。。。 运行中高低温偏差设定及温控器断线检测。注射10段速度、、、、、10段压力设定。。。。。 塑化10段速度、、、、、10段压力及10段背压设定。。。。。 4组吹气,6组抽芯。 锁模、注射、顶出均采用高精度光学编码器(标配)或电位器(选配)。 储存报警历史记录,方便工艺调试及维护。 生产数量及批次控制。 配合iChen订单排单系统。 自动切换润滑设定,缺油报警。 操作动作图形显示,方便注塑机运行的监督。 循环操作时间监视,方便调整以缩短循环时间。 注射速度、压力标准图与当前图对比。 注射终点统计。 在线监视程序运行情况及各种输入、输出、定时器、计数器的状态,方便调试和维护。支持104个输出、104个输入、200个定时器及20个计数器状态监控。模具数据可自由选取、复制及删除。可利用电脑内预设模具数据,保存设定时间。亦可外接SD卡输入数据。智能故障检测及辅助操作指示。支持热流道温度控制(60腔,选配)。全面支持iChen网络管理系统。
1. 评估和管理气道:A. 按需供氧,治疗休克和/或呼吸窘迫B 使用非再呼吸面罩将氧气直接送到呼吸困难婴幼儿的面部,不要使用吹气式供氧,因为这是无效的。父母可以帮助您施用氧气和/或雾化器,因为如果治疗来自他们,孩子更有可能耐受。唯一的例外是当孩子的躁动可能造成危险时(例如,未接种疫苗的儿童中罕见的会厌炎病例)C 应用脉搏血氧仪并按照脉搏血氧仪的程序进行治疗D. 准备好辅助通气2. 评估患者的一般情况、相关病史并确定 OPQRSTI 和 SAMPLE。特别要询问患者潜在疾病的严重程度。他们上次就诊或因此住院是什么时候?插管过吗?询问药物依从性。 3. 患者近期是否患过任何可能加剧潜在呼吸系统疾病的疾病/感染(例如,感冒引发了 COPD 发作?)4. 不要忽视非慢性肺部问题引起的呼吸困难的其他原因(例如,急性心肌梗死、休克、气胸、发烧)——保持广泛的鉴别诊断!5. 尝试了解患者的复苏状态(即 DNR 舒适护理或 DNR 舒适护理逮捕)。插管是一种积极的治疗方法,可能违背患者的意愿。6. 听诊肺部前部,左右比较,尽可能听诊后部(如果患者可以坐起)。在衬衫下直接在胸壁上听;衣服织物可能听起来像噼啪声。7. 让患者采取舒适的位置 8. 联系医疗控制中心,告知患者状况并立即转运,除非 ALS 单位正在途中,预计到达时间不到 5 分钟。 9. 任何先进气道(ET 管、i-gel、LMA、King 或 Combitube)必须通过连续呼气末二氧化碳 (ETCO2) 波形二氧化碳图验证其位置
1. 引言 在现代交通系统中,减阻对于减少能源消耗和污染物排放至关重要。正如 Cheng 等人 [3] 所述,交通运输部门占能源预算的 25%,却排放了全球 10% 以上的温室气体。表面摩擦是造成阻力的一个重要因素,对于商用飞机来说,其总阻力中高达 55% 是由表面摩擦引起的。在过去的几年中,人们提出了各种技术来通过实验和数值方法减少表面摩擦阻力(例如 [5]、[10] 和 [14])。大多数减阻策略都侧重于壁面附近的相干结构,例如准流向涡旋 (QSV) 和速度条纹,这些结构与表面摩擦阻力密切相关。诸如喷出和扫掠等众所周知的事件都与 QSV 密切相关 [13]。最近的研究表明,可以使用相对简单的方案来控制近壁面湍流事件,从而减少表面摩擦。Choi 等人 [4] 对湍流通道流中的主动控制进行了直接数值模拟。他们发现,通过施加吹气和吸气来抵消壁面法向速度,可实现高达 25% 的壁面摩擦减少。此外,他们观察到当检测平面靠近壁面(y + ≈ 10 )时,阻力会减小,而当检测平面距离壁面较远时,阻力会显著增加。Rebbeck 和 Choi [12] 对实时对抗控制进行了风洞实验。他们研究了当使用壁面法向射流对单个扫掠事件施加对抗控制时,边界层的近壁面湍流结构如何变化。他们的结果表明,扬声器执行器产生的壁面法向射流可以有效阻挡扫掠事件期间高速流体的向壁运动。这表明,对壁面湍流进行反向控制可以减少湍流边界层的表层摩擦阻力。最近,Yu 等人 [15] 开发了一种人工智能开环控制系统,用于操纵平板上的湍流边界层,以减少摩擦阻力。边界层的特征是基于动量厚度的雷诺数 Reθ ,等于 1450。该系统由合成射流、壁线传感器和用于无监督学习最优控制律的遗传算法组成。每个合成射流(从矩形流向狭缝中喷出)的速度、频率和驱动相位都可以独立控制。通过使用