虽然单克隆抗体(mAb)是一类重要的药品类别,但成本,复杂性,尤其是递送仍然存在重大问题:克服经常注入抗体的概念是一个值得的目标。一种有吸引力的方法是将非整合DNA直接传递给肌肉组织,使患者充当自己所谓的“蛋白质工厂”。使用脂质纳米颗粒(LNP)和病毒载体进行了这种概念的演示,但是这些传递方法面临着重大挑战,包括肝外交付不良,货物兼容性,安全性,可重复性和成本。聚合物纳米颗粒(PNP)提供了解决这些问题的解决方案,但是面临着自己的挑战,例如大量可能的聚合物结构和多体式配方条件。然而,机器学习,材料信息学和高通量化学合成技术的进步为解决这些挑战提供了有效探索聚合物设计空间的基础。我们的Sayer TM平台利用了质粒DNA(PDNA)的大量计算数据集 - 聚合物相互作用来促进靶向剂的发现和通过深度学习的发现,并推动对各种靶向组织的新型PNP的发现。在这项工作中,我们证明了设计PNP的能力,可以为PGT121提供PDNA编码,PGT121是一种广泛中和的抗HIV抗体,该抗体靶向HIV-1 Invelope糖蛋白上的V3 GlyCan依赖性表位位点。Sayer设计的聚合物与PGT121质粒形成小稳定的PNP。此外,我们表明我们可以通过延长来提高抗体水平和耐用性。与其他状态的DNA降低车辆相比,转染后1天,在转染后1天表现出强血清PGT121蛋白水平。更重要的是,纳米PNP的肌内递送启用了大于1.0 µg/ml峰蛋白表达水平,注射后> 56天,有意义的,耐用的表达水平。在肌肉内输送PNP时,可以看到较低剂量和较低的N/P比的一般趋势。这些参数与聚合物结构分开,提供了不同的机制,可以使用机器学习技术优化体内递送性能。可以将概念扩展到其他抗体,蛋白质或酶的连续产生,这表明PDNA通过PNPS作为治疗方式具有广泛的适用性。最后,我们强调,通过安全有效的PNP在体内提供DNA编码的分泌蛋白的策略可能适用于广泛的其他疾病方式。
新皮层发育的特征是神经祖细胞(NPC)膨胀,神经发生和胶片发生的顺序相。多肉体介导的表观遗传机制在调节发育过程中的谱系潜力中起着重要作用。PolyComb抑制复合物1(PRC1)的组成在哺乳动物中高度多样,并被介绍为有助于细胞命运的上下文调节。在这里,我们对规范PRC1.2/1.4和非典型PRC1.3/1.5的作用进行了并排比较,所有这些都在NSC的增生和分化中表达。我们发现NSC中PCGF2/4的缺失导致在神经发生和神经胶原型相期间,PCGF2/4的删除大大减少和改变谱系命运,而PCGF3/5则起了较小的作用。从机械上讲,编码干细胞和神经源性因子的基因由PRC1结合,并在PCGF2/4缺失时差异表达。因此,与非典型的PRC1相比,在扩散,神经源和神经胶原阶段的增殖,神经源和神经胶原阶段期间,规范性PRC1在NSC调节中起着更重要的作用,而不是不同的PRC1亚复合物在NSC调节中起着更重要的作用。
1个生物科学学院,谢菲尔德大学,谢菲尔德,英国2 2神经科学研究所,谢菲尔德,谢菲尔德,谢菲尔德,英国,英国,大学生物学和癌症大学3,出生缺陷研究中心,UCL GOS儿童健康研究所,UCL GOS儿童健康研究所,UK 4 Cell and Developmence of Dundee and Dundee of Dundee,Dundee of Dundee,Dundee of Dundee,Dundee of Dundee and Dundee of Dunderecience of Dundee and Dundee of Dundee of Dunderecience of Dundee and Biocience of Dundereci英国谢菲尔德谢菲尔德·哈勒姆大学化学 *作者(f.cooper@sheffield.ac.uk和a.tsakiridis@sheffield.ac.ac.uk)1个生物科学学院,谢菲尔德大学,谢菲尔德,英国2 2神经科学研究所,谢菲尔德,谢菲尔德,谢菲尔德,英国,英国,大学生物学和癌症大学3,出生缺陷研究中心,UCL GOS儿童健康研究所,UCL GOS儿童健康研究所,UK 4 Cell and Developmence of Dundee and Dundee of Dundee,Dundee of Dundee,Dundee of Dundee,Dundee of Dundee and Dundee of Dunderecience of Dundee and Dundee of Dundee of Dunderecience of Dundee and Biocience of Dundereci英国谢菲尔德谢菲尔德·哈勒姆大学化学 *作者(f.cooper@sheffield.ac.uk和a.tsakiridis@sheffield.ac.ac.uk)
在线存放在白玫瑰研究中的重用项目受版权保护,除非另有说明,否则保留所有权利。可以下载和/或印刷供私人学习,或者按照国家版权法所允许的其他行为。发布者或其他权利持有人可以允许进一步复制和重新使用全文版本。这是通过该项目的白玫瑰研究在线记录的许可信息来指示的。
1 美国企业研究所温特政治经济学讲席教授。本文是对 2024 年 5 月《外交事务》杂志在线版中出现的论点的延伸论述。特别感谢 Jesús Fernández-Villaverde 教授和 Patrick Norrick 先生就本文提出的一些观点进行的宝贵而清晰的讨论。其余任何错误均由我本人负责。联系方式:eberstadt@aei.org。
3 Oxford Immune Algorithmics, Reading, UK ABSTRACT This study employs systems medicine approaches, including complex networks and machine learning- driven discovery, to identify key biomarkers governing phenotypic plasticity in pediatric high-grade gliomas (pHGGs), namely, IDHWT glioblastoma and H3K27M diffuse intrinsic pontine glioma (DIPG).通过整合单细胞转录组学和组蛋白质量细胞术数据,我们将这些侵略性肿瘤概念化为复杂的自适应生态系统,该系统由被劫持的oncofetal发育程序和病理吸引力动力学驱动。Our analysis predicts lineage-plasticity markers, including KDM5B (JARID1B), ARID5B, GATA2/6, WNT, TGFβ, NOTCH, CAMK2D, ATF3, DOCK7, FOXO1/3, FOXA2, ASCL4, PRDM9, METTL5/8, RAP1B, CD99, RLIM, TERF1, and LAPTM5, as drivers of细胞命运控制论。此外,我们确定了内源性生物电特征,包括Grik3,Grin3,Slc5a9,Nkain4和KCNJ4/6,是潜在的重编程靶标。此外,我们验证了先前发现的可塑性基因,例如PDGFRA,EGFR靶标,OLIG1/2,FXYD5/6,MTSSS1,SEZ6L,MTRN2L1和SOX11,证实了我们复杂系统方法的鲁棒性。此系统肿瘤学框架为精确医学提供了有前途的途径,通过指导由单细胞多摩学告知的组合疗法来优化患者的结果,并以PHGG表型可塑性为治疗性脆弱性。此外,我们的发现表明肿瘤表型可塑性(即过渡疗法)和PHGG生态系统中疾病的表观遗传重编程性能朝向稳定的,转分化的状态。因此,了解关键字:小儿神经胶质瘤;表型可塑性;癌症多组学;数据科学;系统医学;精度肿瘤学。引言小儿高级神经胶质瘤(PHGGS)代表致命疾病,没有任何精确诊断,有效的治疗或预防(Swanton等,2024)。这些侵略性肿瘤破坏了发育过程和组织稳态,导致形态发生,对治疗的抵抗力和免疫逃避(Senft等,2017; Jessa等,2019)。对其病理学的中心是表型可塑性 - 细胞在谱系身份之间适应响应微环境压力的能力。This plasticity arises from epigenetic dysregulation, such as oncohistone mutations like H3K27M (H3F3A) and driver mutations like TP53, ACVR1, etc., which destabilize chromatin structure, trapping cells in metastable, multipotent states and impairing their differentiation hierarchy (Shpargel et al., 2014; Paugh et al., 2011; Jessa et al., 2019)。实际上,这些塑料状态促进了肿瘤的进展和耐药性作为新兴行为,从而创造了不稳定的生态系统。
。CC-BY-NC 4.0国际许可证的永久性。根据作者/资助者,它是根据预印本提供的(未经Peer Review的认证),他已授予Biorxiv的许可证,以在2024年12月24日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2024.12.23.630055 doi:Biorxiv Preprint
n,n-二甲基丁胺(DMT)是一种有效而快速的迷幻药物,可诱导意识内容的根本性重组,包括时间和空间的溶解以及感知浸入“替代现实”中。虽然临时研究在某种程度上使我们对DMT的了解和迷幻药更广泛,但几乎没有研究将主观经验的时间分辨度量与时间细粒度的脑成像整合在一起。因此,我们提出了当前的研究,这是对在自然条件下通过DMT诱导的主观和神经动力学的剂量依赖性研究。十九名参与者以盲目的,平衡的顺序在两个给药上接受了20mg或40mg剂量的Freebase DMT,并且剂量均一致。脑电图(EEG)数据以及时间分辨的回顾性测量(时间经验追踪)。两种剂量DMT都诱导了经验维度的快速变化。然而,40mg剂量引起了更大的极端视觉幻觉和情感激烈的体验。此外,我们在脑电图数据上计算了各种神经标记,发现振荡性α功率和置换熵与连续的主观经验维度最密切相关。引人注目的是,Lempel-Ziv复杂性是一种先前被誉为迷幻状态内主观体验的牢固相关性的复杂性,是最不密切相关的神经标记物。这些发现提供了一个重要的见解,即独立的神经动力学如何促进这种激进而强烈的意识状态。
已清楚的是,胎儿和出生后肝脏 (LPC) 中的多能干细胞能够分化为肝细胞和胆管细胞。然而,与 LPC 分化有关的信号通路仍未完全了解。转录因子 EB (TFEB) 是溶酶体生物合成和自噬的主要调节因子,已知其参与成骨细胞和髓系分化,但它在肝脏谱系承诺中的作用尚未得到研究。我们在这里表明,在发育和再生过程中,TFEB 驱动小鼠 LPC 分化为祖细胞/胆管细胞谱系,同时抑制肝细胞分化。遗传相互作用研究表明,Sox9 作为前体细胞和胆道细胞的标志物,是 TFEB 的直接转录靶点,也是其影响肝细胞命运的主要介质。总之,我们的研究结果确定了一条控制肝细胞谱系承诺的未探索的通路,其失调可能在胆道癌中发挥作用。
