长期以来,各种理论模型都预测了分子态,特别是在单玻色子交换模型中预测的 DD ∗ 同标量轴矢量分子态。在本文中,我们研究了高斯展开法中的 DDD ∗ 系统,其 DD ∗ 相互作用源自单玻色子交换模型,并受到 T cc 相对于 D ∗ + D 0 阈值的 273 ± 63 keV 的精确结合能约束。我们证明了 DDD ∗ 态的存在,其结合能为几百 keV,自旋宇称为 1 − 。其主要衰变模式是 DDD π 和 DDD γ 。这种状态的存在原则上可以通过即将发布的 LHC 数据得到证实,并将明确地确定 T + cc 态以及许多类似奇异状态的性质,从而加深我们对非微扰强相互作用的理解。
经典力学在时间反演下是不变的:它的基本定律不区分过去和未来。观察到的时间箭头是一种宏观现象,它取决于宏观变量的使用以及这些变量定义的熵在过去较低的偶然事实。量子力学也是这样吗?一方面,薛定谔方程是时间反演不变的,量子场论也是如此(直到宇称变换和电荷共轭)。基本物理学是时间反演不变的,时间取向的来源又是宏观和熵的。基本量子现象不带有首选的时间箭头。然而,另一方面,量子理论的形式主义通常以明显的时间取向来定义。在这里,我们解决了物理学和形式主义之间的这种紧张关系。我们研究了量子形式主义的时间取向的原因,并表明这种紧张关系是可以解决的。形式主义的不对称性是由于
过去十年,我们见证了一系列成果丰硕的实验研究,其中低能中子束用于研究基本相互作用。这项工作包括宇称和时间反转对称性破坏、重子不守恒、弱相互作用、基本常数、电荷守恒和中子干涉术以及其他各种研究。这项工作对粒子物理学、核物理学、天体物理学和宇宙学具有重要意义。过去,这项工作的地理重点是法国格勒诺布尔劳厄-朗之万研究所 (ILL) 的高通量反应堆,并在德国和苏联的其他反应堆上投入了大量精力。虽然美国的研究人员在这一领域发挥了一定领导作用,但由于美国缺乏合适的低能中子设施,美国无法做出更大的贡献。
热带药学研究杂志 2022 年 7 月;21 (7): 1523-1529 ISSN:1596-5996(印刷版);1596-9827(电子版)© 尼日利亚贝宁城贝宁大学药学院药物治疗组,邮编 300001。在线获取网址:http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v21i7.24 原创研究文章 多西他赛-吉西他滨化疗联合 5-氟尿嘧啶靶向治疗治疗晚期非小细胞肺癌的疗效和安全性 秦叶宇 1、谢静 1、王海霞 2 * 海南省人民医院(海南医学院海南附属医院)1 药剂科,2 肿瘤内科,海南省海口 570311 *通讯地址:电子邮箱:wanghaixia74@163.com 送审日期:2022 年 1 月 8 日 修订接受日期:2022 年 6 月 30 日
10.48550/arXiv.2410.06489。[2023 IF=14.7] 孙鹏展教授、Andre Geim 教授、Marcelo Lozada-Hidalgo 教授和郝光平教授为本论文的通讯作者,第一作者为IAPME 博士生季宇博士。该研究得到澳门特别行政区科学技术发展基金(FDCT,0063/2023/RIA1)、国家自然科学基金(NSFC,52322319)、澳大研究补助金(SRG2022-00053-IAPME)、澳大及马里兰大学基金会研究补助金(MYRG-GRG2023-00014-IAPME- UMDF)、欧洲研究理事会(补助金 VANDER)、英国劳氏基金会(补助金 Designer Nanomaterials)、英国研究与创新局(EP/X017745:ML-H)、英国皇家学会(URF\R1\201515:ML-H.)及哈利法大学石墨烯及二维材料研究与创新中心指导研究项目计划(RIC2D-D001:ML-H. 和 AKG)的支持。
助理Prof. EGE ÖZGÜN 个人信息 办公室电话:+90 312 297 7233 电子邮箱:egeozgun@hacettepe.edu.tr 网站:http://yunus.hacettepe.edu.tr/~egeozgun/ 国际研究人员 ID ORCID:0000-0001-6186-7087 Yoksis 研究人员 ID:341612 教育信息 博士学位,Ihsan Dogramaci Bilkent 大学,理学院,物理系,土耳其 2010 - 2016 研究领域 原子和分子物理学、光学、量子力学、场论和相对论、密集论文 2:电子结构、电、磁和光学特性 学术头衔/任务 助理教授,Hacettepe 大学,Mühendislik Fakültesi,Fizik Mühendisliği Bölümü, 2021 - 继续 讲师,格拉茨卡尔弗朗岑斯大学,物理学,2018 - 2019 发表的期刊文章被 SCI、SSCI 和 AHCI 检索 I. N 通道宇称时间对称性 ÖZGÜN E.EPL,第 144 卷,第 3 期,2023 年 (SCI-Expanded) II. 四通道宇称时间对称性 ÖZGÜN E., ÖZBAY E., Ozdur I. EPL,第 140 卷,第 1 期,2022 年 (SCI-Expanded) III.具有偏振多路复用通道的奇偶时间对称光电振荡器 ÖZGÜN E.、Uyar F.、KARTALOĞLU T.、ÖZBAY E.、Ozdur I. JOURNAL OF OPTICS,第 24 卷,第 5 期,2022 (SCI-Expanded) IV. 自旋 1/2 粒子从 PT 对称复势中的散射 Ozgun E.、Hakioğlu TT、Ozbay E. EPL,第 131 卷,第 1 期,2020 (SCI-Expanded) V. 用于量子信息应用的 Epsilon 近零波导:针对 N 量子比特的理论方法Ozgun E.、Ozbay E. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN,第 87 卷,第 11 期,2018 (SCI-Expanded) VI.具有一维损耗/增益双层的光子异质结构中 PT 对称相和 PT 破缺相的宽带混合
魏在新 1 张功宇 1 宋晓婷 1 王英杰 1 王恒通 1 高慕奇 1 田欢荣 1 蔡文俊 1 刘瑶 1,* 汪忠阳 2,* 张子东 1,* 范润华 3 摘要 由于其诱人的特性,开发负电荷材料对于智能电子和现代信息技术中的许多应用至关重要。在稀释金属方面人们已经做了许多努力,但是,没有从增加电子密度方面进行更多的尝试,而且掺杂对负介电常数的影响仍不清楚。在本文中,通过溶胶-凝胶技术并随后烧结制备了单相 LaCo 1-xNixO 3(𝑥=0.06、0.1、0.12、0.16、0.2)。详细研究了电子结构、电学性质以及负介电常数性质,并从电动力学的角度阐述了电导率与负介电常数之间的相关性。
实现量子计算的主要障碍 [1] 是处理量子误差。从环境中分离出一点量子信息已经够具挑战性的了;然而,为了实现一台有用的量子计算机,必须维持数千个纠缠量子比特的相干性。拓扑量子比特的用途在于它们内置了容错能力,这是由于任意子和边界模式之间的空间分离 [2]。马约拉纳零模式 [3-5] 是 p 波超导纳米线的端模式,是拓扑量子计算中最有前途的方向之一 [4,6-14]。这些马约拉纳端模式可以非局部地存储信息,并且可以编织起来执行受拓扑保护的逻辑门 [15-22]。尽管拓扑量子比特具有一定程度的防错能力,但它们仍然需要纠错才能完全实现为计算量子比特。完美的马约拉纳量子比特将具有无限长,并保持在零温度下。非零温度会导致有限的准粒子密度,从而导致量子比特出现错误。存在诸如环面码 [ 2 ]、表面码 [ 23 – 26 ] 和颜色码 [ 27 – 29 ] 之类的纠错码,它们可以在马约拉纳量子比特上实现 [ 30 – 37 ] 或平面码 [ 38 , 39 ] 等其他方案。然而,这些纠错方案需要大量开销,需要大量冗余量子比特来捕获和纠正错误。正如 Kitaev 指出的那样 [ 2 ],物质的任何拓扑相都可以识别为纠错码。在这一脉络中,我们要问,由马约拉纳纳米线链构建的一维 (1D) 费米子拓扑相 [40, 41] 是否可以与“费米子宇称保护的纠错码”联系起来。只要费米子宇称守恒,这样的链就可以防止量子误差,而且只需要一行物理量子比特,而不是一个表面。在本文中,我们展示了如何使用马约拉纳纳米线链来显著提高量子比特的寿命,因为马约拉纳量子比特中存在不同错误类型的层次结构。由于观察到的密度出乎意料的高