使用Tencor的HRP-250来测量轮廓。使用了来自Cabot的SS12和来自AGC的CES-333F-2.5。在将晶片粘合到粘合之前(氧化物到氧化物和面对面),将顶部晶圆的边缘修剪(10毫米),并同时抛光新的斜角。这可以防止晶片边缘在磨/变薄后突破[1]。将晶圆粘合后,将散装硅研磨到大约。20 µm。之后,通过反应性离子蚀刻(RIE)将粘合晶片的剩余硅移到硅硅基(SOI) - 底物的掩埋氧化物层(盒子)上。另一个RIE过程卸下了2 µm的盒子。之后,粘合晶片的晶圆边缘处的台阶高为3 µm。随后沉积了200 nm的氮化物层,并使用光刻和RIE步骤来构建层。此外,罪被用作固定晶片的si层的固定。必须将设备晶圆边缘的剩余步骤平面化以进行进一步的标准处理。为此,将剩余的罪硬面膜(约180 nm)用作抛光止损层。在平面化之前,将4500 nm的Pe-Teos层沉积在罪恶上。这有助于填充晶圆的边缘。在第一种抛光方法中,将氧化物抛光至残留厚度约为。用SS12泥浆在罪过的500 nm。在这里,抛光是在晶片边缘没有压力的情况下进行的。然后将晶圆用CEO 2泥浆抛光到罪。用CEO 2浆料去除氧化物对罪有很高的选择性,并且抛光在罪恶层上停止。第一种抛光方法花费的时间太长,将氧化物层抛光至500 nm的目标厚度。此外,在抛光SIO 2直到停止层后,用SS12稍微抛光了罪。最后,高度选择性的首席执行官2 -lurry用于抛光罪。结果表明,步进高度很好,但是弹药范围很高(Wafer#1)。第二种方法的抛光时间较小,并在500 nm上停在SIO 2上,而最终的抛光和首席执行官2 -slurry直至罪显示出良好的步进高度,并具有更好的罪恶晶圆范围(Wafer#2)。
要约价格预计将取决于唯一的整体协调员(本身和代表承销商)与公司确定日期之间的一致性,预计将在2023年12月22日星期五左右,但无论如何,无论如何,无论如何,在2023年12月22日(12月22日星期五)中下午12:00,不得晚于2023年12月22日星期五。要约价格预计不超过每股38.45港元的港元,而且预计不少于每股27.47港元,除非另有宣布。香港要约股的申请人必须按申请支付每股38.45港元的最高要约价格,同时经纪1.0%,AFRC交易税为0.00015%,SFC交易税,0.0027%的0.0027%和证券交易所交易交易税,如果股票为0.00565%,则比股票较少,如果股价为0.00565%,则比HK价格较低。如果出于任何原因,该公司与唯一的整体协调员(本身和代表承销商)在2023年12月22日(星期五)中午或之前在2023年12:00中午之前或之前均不同意要约价格,则全球募股(包括香港公共奉献)将不会进行和乐意。
随着可再生能源高渗透率引起的净负荷的不确定性和变异性的增加,单个微电网(MG)的独立操作正面临着巨大的操作问题,例如高运营成本,局部可再生能源的自我消耗率低,而局部可再生能源的自我消费率低,并且加剧了峰值和山谷负载。在本文中,提出了一种用于互连多微晶(MMG)的移动能源存储系统(MYS)和基于功率交易的灵活性增强策略,考虑到不确定的可再生能源生成。混乱可以通过卡车在不同的微电网之间移动,我们使用这种时间 - 空间灵活性为MMG提供充电/放电服务。然后,由于确保在协作操作中的公平性和合理性,Aumann -Shapley是为了在MMG系统中分配了MMG系统的费用和电力交易,这是最重要的。之后,从风险规避的角度来看,未提供的预期功率(EPN)和预期功率削减(EPC)是评估不确定的可再生能源的风险措施。数值研究表明,MMG操作的混乱使柴油发电机的总运营成本减少了23.58%,风和太阳能的总网格连接量的改善增加了7.17%,总负载曲线的平滑度提高了0.92%。此外,用于MMG操作的互连系统可以使风和太阳能的总网格连接量增加6.69%,并且与未连接的系统相比,总负载曲线的平滑度提高了1.50%。
混凝土是最常见的建筑材料。混凝土类型丰富,配方取决于特定用途。混凝土的微观结构通常是强烈的异质性,具有水泥,细和粗骨料,充满空气的毛孔和各种增援。混凝土的计算模型通常会大大降低以确保安全性。更精确的模型可以从材料和CO 2排放方面巨大节省。通过3D计算机断层扫描(CT)观察到的原位机械测试,特别是观察到3D的裂纹起始和生长可以帮助改善这些模型。 大规模的CT系统gulliver专用于研究分别为6 m和1 m的现实大型混凝土束和宽度的疲劳动力学。 分析在原位弯曲测试中生成的图像数据需要特别可靠的检测和正确分割薄裂纹。 因此,最近比较了裂纹分割的算法[1],扩展到多尺度裂纹[2,3],适用于纤维增强的混凝土[4,5],甚至是新发明的[6,7]。 对于方法的公平定量比较以及机器学习模型的培训和开发,基于合成裂纹结构的半合成CT图像[8-10]至关重要。 首先,裂纹是作为分数布朗动作的实现[11]。 后来,由于其多功能性,首选由随机伏罗尼叶镶嵌物的小平面形成的最小表面[8]。 在[13,14]中研究了裂纹与混凝土微观结构之间的相互作用。通过3D计算机断层扫描(CT)观察到的原位机械测试,特别是观察到3D的裂纹起始和生长可以帮助改善这些模型。大规模的CT系统gulliver专用于研究分别为6 m和1 m的现实大型混凝土束和宽度的疲劳动力学。分析在原位弯曲测试中生成的图像数据需要特别可靠的检测和正确分割薄裂纹。因此,最近比较了裂纹分割的算法[1],扩展到多尺度裂纹[2,3],适用于纤维增强的混凝土[4,5],甚至是新发明的[6,7]。对于方法的公平定量比较以及机器学习模型的培训和开发,基于合成裂纹结构的半合成CT图像[8-10]至关重要。首先,裂纹是作为分数布朗动作的实现[11]。后来,由于其多功能性,首选由随机伏罗尼叶镶嵌物的小平面形成的最小表面[8]。在[13,14]中研究了裂纹与混凝土微观结构之间的相互作用。这些合成的裂纹结构可以模仿多种裂纹形态,包括局部厚度分布和分支,并具有几个程度的表面粗糙度,因为[12]很好地证明了。到目前为止,合成裂纹并未与将CT图像用作背景的混凝土的微观结构相互作用。特别是,将裂缝分类为周围的混凝土组件。这是通过两步过程实现的。首先,通过模板匹配对裂纹结构进行了分割。然后,根据模板的方向上的灰色值对裂纹进行分类。在这里,我们提出了一种依赖于分割裂纹和聚集体的方法。然后将裂纹分配给两个可能的类别之一:经晶(通过聚集体)或晶间(聚集体之间)。然后,经晶裂纹体素的相对数量产生了一个度量,以量化裂纹行为的差异。在这里,我们研究了相同组成的难治性混凝土样品,但在不同温度下被后加工(烧结)。在压缩应力下扫描样品。他们清楚地表明,裂缝确实与混凝土的微观结构相互作用,请参见图1。裂纹可能沿聚集体,通过它们或通过周围的水泥矩阵传播。在失败之前,分析载荷步骤的经晶和晶间体素的分数进一步量化了烧结温度的影响。我们在两个圆柱形耐火混凝土样品的示例中演示了这一分析,分别在1.000°C和1.600°C下烧结。最近,我们为裂纹结构设计了一种多功能几何模型[8,9],用于方法验证和比较以及机器学习方法的训练 - 由随机Voronoi Tessellation的相位形成的最小表面。最小表面计算的优化方法的改进版本可实现多标准优化[17]。在这里,我们利用了这种新的可能性来生成合成裂纹结构,该结构避免了聚集体或通过图1中的真实混凝土样品中观察到的。
修读“项⽬报告”,以获得,以获得21学“实习及报告”,的学⽣须修读以下八⾨选修学科单元/科⽬,以获,以获24学分︰453 3数字集成电路453数据转换器集成电路设计453数据转换器集成电路设计453数据转换器集成电路设计453柔性交流输电系统453 3柔性交流输电系统453电源管理集成电路设计453 45 3 3⽣物医学⼯程专题453⽣物医学⼯程专题453 3
氧化亚铜 (Cu 2 O) 是一种具有大激子结合能的半导体,在光伏和太阳能水分解等应用中具有重要的技术重要性。它还是一种适用于量子光学的优越材料体系,能够观察到一些有趣的现象,例如里德堡激子作为高激发原子态的固态类似物。之前与激子特性相关的实验主要集中在天然块体晶体上,因为生长高质量合成样品存在很大困难。本文介绍了具有优异光学材料质量和极低点缺陷水平的 Cu 2 O 微晶体的生长。本文采用了一种可扩展的热氧化工艺,非常适合在硅上集成,片上波导耦合的 Cu 2 O 微晶体就证明了这一点。此外,还展示了位点控制的 Cu 2 O 微结构中的里德堡激子,这与量子光子学中的应用有关。这项工作为 Cu 2 O 在光电子学中的广泛应用以及新型器件技术的开发铺平了道路。
非晶态固体材料因其离子电导率、稳定性和可加工性等优良特性,在储能领域引起了越来越多的关注。然而,与块体晶体材料相比,密度泛函理论 (DFT) 计算的规模限制和实验方法的分辨率限制阻碍了对这些高度复杂亚稳态系统的基本理解。为了填补知识空白并指导非晶态电池材料和界面的合理设计,我们提出了一个基于机器学习的原子间势的分子动力学 (MD) 框架,该框架经过动态训练,以研究非晶态固体电解质 Li 3 PS 4 及其保护涂层非晶态 Li 3 B 11 O 18 。使用机器学习势使我们能够在 DFT 无法访问的时间和长度尺度上模拟材料,同时保持接近 DFT 水平的精度。这种方法使我们能够计算非晶化能、非晶-非晶界面能以及界面对锂离子电导率的影响。这项研究证明了主动学习的原子间势在将从头算建模的应用扩展到更复杂和现实的系统(例如非晶材料和界面)方面的良好作用。
在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
免疫检查点分子阻断剂 ( immune checkpoint blockade , ICB ) 是肿瘤免疫治疗的有效策略之一 , 其中靶向程序 性死亡受体 -1 ( programmed death receptor-1 , PD-1 ) / 程 序性死亡配体 -1 ( programmed death-ligand 1 , PD-L1 ) 的单克隆抗体主要在 TME 中发挥调节免疫细胞功能 的作用。 CD8 + T 细胞是抗肿瘤反应中极具破坏性的 免疫效应细胞群 , 其浸润到 TME 的密度是影响免疫 检查点阻断治疗结果的预测指标 [ 18 ] 。研究表明 , PD- 1/PD-L1 检查点抑制剂与化疗药物联合使用是治疗晚 期非小细胞肺癌的有效方法 , 然而其在肝癌 、 前列腺 癌等实体肿瘤中效果并不理想 [ 19 ] 。为了增强 PD-L1 抗体免疫治疗疗效 , Li 等 [ 20 ] 开发了一种偶联抗 PD- L1 单克隆抗体和负载多西紫杉醇 ( docetaxel , DTX ) 多 功能微泡系统 , 联合超声空化效应增加肿瘤细胞的凋 亡率和 G2-M 阻滞率 , 还可以通过促进 CD8 + T 和 CD4 + T 细胞的增殖 、 降低细胞因子 VEGF 和 TGF-β 的水平来增强抗肿瘤作用。为了提高 PD-L1 抗体在 肝癌中的治疗效果 , Liu 等 [ 21 ] 设计了一种携带 PD-L1 抗体和二氢卟吩 e6 ( chlorin e6 , Ce6 ) 的靶向纳米药物 递送系统 , 该类靶向纳泡可通过 PD-L1 抗体主动靶向 作用 , 促进 Ce6 在肿瘤部位的聚集与释放 , 并通过超 声介导 Ce6 声敏效应促进肿瘤细胞凋亡 、 诱导肿瘤细 胞发生免疫原性死亡 , 同时通过 PD-L1 抗体对 PD- 1/PD-L1 信号通路的阻断促进 CD8 + T 在肿瘤组织中 浸润 , 两者协同发挥抗肿瘤免疫反应。为了增强肿瘤 内部免疫细胞渗透 , Wang 等 [ 22 ] 提出一种将 PD-L1 靶 向的 IL-15 mRNA 纳米疗法和 UTMD 结合的治疗策 略 , 通过声孔效应特异性地将 IL-15mRNA 转染到肿 瘤细胞中 , 激活 IL-15 相关的免疫效应细胞 , 同时阻 断 PD-1/PD-L1 通路 、 诱导免疫原性死亡进而启动强 大的全身免疫反应。 3.3 超声联合载药微泡调节 TME 免疫抑制状态
在750℃下烧成6小时以上,成为单斜晶WO 3 相。 P-2、P-3在烧成前为单斜晶系WO 3 、三斜晶系WO 3 、单斜晶系W 0.71 Mo 0.29 O 3 (PDF 01-076-1297),但在750℃下烧成6小时以上,变为单斜晶系W 0.71 钼 0.29 O 3 (PDF 01-076-1297) 和矩形 W 0.4 Mo 0.6 O 3 (PDF 01-076-1280)。 P-4在750℃下烧制24小时之前,单斜晶系W 0.71 Mo 0.29 O 3 (PDF 01-076-1297)、矩形W 0.4 Mo 0.6 O 3 和单斜晶系MoO 3 混合,但经过100小时后。煅烧后,MoO 3 峰消失,单斜晶系W 0.71 Mo形成了0.29 O 3 和矩形晶体W 0.4 Mo 0.6 O 3 。 P-5在烧成前为单斜MoO 3 (PDF PDF 00-047-1081),但烧成6小时以上后,变为具有层状结构的矩形MoO 3 (PDF 03-065-2421)。