pyrochlore氧化物由于其阳离子电荷和阴离子缺乏效率而被认为是各种电化学应用的活性候选物。同时,pyrochlore的阳离子取代是改善电极材料催化活性的关键参数。在此背景下,本文旨在合成二氧化甲氧化物氧化物氧化物氧化物纳米颗粒(BI 0.6 y 1.4 SN 2 O 7; byso nps),并构建抗抗毒性氯丙嗪(CHPMZ)的电化学传感器。通过共沉淀技术进行催化剂,然后进行热处理。分析方法,例如P-XRD,FT-IR,TGA和XPS,确认了Bi3þ的成功取代。通过Fe-SEM和TEM技术分析了准备的催化剂的形态,这表明纳米颗粒的大小为⁓20E 30 nm。从CV结果中,阳离子的取代增强了CHPMZ的电催化氧化,这是由于固有活性增强而具有较大大小阳离子的替代性和pyrochlore结构的阴离子缺乏效率。此外,计算出BYSO/SPCE上CHPMZ的异质速率常数为4.49 10 3 cm/s,这表明BYSO/SPCE上CHPMZ的氧化是准可逆的。用BYSO NPS修饰的电极显示较宽的线性范围(0.01 E 58.41 m m,78.41 E 1158 m m),高灵敏度(1.03 m A/ m m/ cm/ cm 2),低检测极限为3 nm。修改的电极显示出良好的选择性,可重复性和良好的稳定性,可检测CHPMZ。©2022 Elsevier Ltd.保留所有权利。此外,构造的传感器在人类血清和尿液样品中恢复良好的实践分析中显示出令人鼓舞的结果。
图 1:具有不同平均粒子/晶粒尺寸的 SiGe 合金和 Mg 3 Sb 2 样品的晶格热导率(按照传统方法计算)κ L ( κ total − LσT ) 与加权迁移率 µ W 12,14(推导方法见 SI)的关系。 (a)n 型(P 掺杂)和 p 型(B 掺杂)SiGe 在室温下均呈现正相关性。 (b)对于高温(573K)下的 Mg 3 Sb 2,电子不会被晶界明显散射,除最小晶粒尺寸样品外,加权迁移率相同。 相反,在低温(323K)下,随着晶粒尺寸的减小,µ W 显著降低,因此低 µ W 是晶粒边界电阻的良好指标。 κ L 随 µ W 降低而增加的趋势表明即使没有测量晶粒尺寸也存在晶界效应。
摘要:水上的摩擦 - 碳界面仍然是一个主要难题,理论和模拟无法解释纳米级水流的实验趋势。最近的理论框架量子摩擦(QF)提议通过考虑在水和石墨表面中的介电波动之间的非绝热耦合来解决这些实验观察。在这里,使用一个经典模型,该模型能够对固体的介电谱进行微调,我们提供了模拟的证据,以一般支持QF。尤其是,随着固体介电光谱的特征开始与Water的图书馆和Debye模式重叠,我们发现摩擦的增加与QF提出的摩擦相符。在微观水平上,我们发现对摩擦的贡献在固体电荷密度的动力学中比水的动力学更为明显。我们的发现表明,QF的实验性特征可能在固体的反应而不是液态水中更为明显。关键字:液体 - 固体摩擦,纳米级水,液体 - 固体界面,石墨烯,分子动力学
实验室中的实验进化有助于研究人员了解特定条件下适应的遗传和表型背景。同时,代表复杂自然生态位某些方面的简化环境允许剖析选择背后的相关参数,包括温度、氧气供应、营养物质和生物因素。其他微生物或宿主的存在对微生物进化有重大影响,而这种影响通常不同于在非生物条件下观察到的适应路径。在最新一期的 ISME 期刊中,Cosetta 和同事揭示了代表奶酪微生物组演替的跨界相互作用如何促进与食物和动物相关的细菌木糖葡萄球菌的独特进化。作者还发现了一种全球调节器依赖性适应,这种适应导致进化的衍生物表现出色素产生和菌落形态减少,以及分化表型改变,这可能有助于提高适应性。
Database 社会经济弱势家庭统一数据库(格鲁吉亚) DH 区域供热 DHW 生活热水 EEEA 能源效率与能源建议 EEF 能源效率基金 EnC 能源社区 EPS 塞尔维亚电力 ERO 科索沃能源监管办公室 ESCO 能源服务公司 ESPN 欧洲社会政策网络 EU SILC 生活和收入状况调查 EUR 欧元 GE 格鲁吉亚 GNERC 格鲁吉亚国家能源和供水监管委员会 HBS 家庭预算调查 HDD 供暖度日 HIS 供暖系统改进 INSTAT 阿尔巴尼亚统计研究所 kW 千瓦 kWh 千瓦时 LED 发光二极管 LPG 液化石油气 LT 低温 LTRS 长期改造策略 m² 平方米 MD 摩尔多瓦 ME 黑山 MFH 多户住宅 MK 马其顿 MKD 马其顿第纳尔 MoESD 经济与可持续发展部
单相电解质的低离子电导率已不能满足600 ˚C以下的使用要求,制备高离子电导率的复合电解质成为发展方向。本文综述了掺杂CeO 2 无机盐(碳酸盐、硫酸盐)、掺杂CeO 2 金属氧化物以及掺杂CeO 2 钙钛矿复合电解质,分析了第二相对CeO 2 基电解质性能的影响。由于独特的H + /O 2−共导电性,无机盐的加入可以提高掺杂CeO 2 无机盐复合电解质的电导率。掺杂CeO 2 钙钛矿体系总电导率的提高可能是由于晶界电导率提高引起的。在掺杂CeO 2 金属氧化物体系中加入氧化物可以降低烧结温度,提高晶界电导率。以期为制备性能优异的二氧化铈复合电解质提供理论指导。
为了提高对氯化物诱导的局部腐蚀的耐药性,通过将钼含量从3 wt .-%增加到3 wt .-%的Alloy Uns N08825中的Alloy n08825中的3 wt .-%左右的825 ctp中,通过将钼含量从大约3 wt .-%增加到3 wt。通过增加钼含量,pren(由公式(1)给出的匹配抗性等效数)从33增加到42,这给出了提高耐腐蚀性的首先指示。通过在合金N08825中从30°C(86°F)2的临界点温度(CPT)升高至合金825 CTP的合金3-5(131°F)3-5的临界点温度(CPT)从30°C(86°F)2中升高,通过实验证实了改善的耐腐蚀性。pren =%cr + 3.3 x%mo + 16 x%n(1)此外,众所周知,合金N08825在焊接过程中非常容易易于热开裂,这可能发生在热影响区(HAZ)或焊接金属本身中,代表了跨间的故障模式。为了评估材料的热开裂敏感性,固化温度范围(固体二液值差值,ΔT)通常用作首次评估。较高的ΔT导致沿晶界和跨齿状区域分布的残留液相,从而导致冷却收缩过程中晶界延展性的损失,因此可以进行热开裂。6,7在实验上,可以通过改进的涂层(MVT)测试来评估热破裂的敏感性。通常将钛和niobium添加到合金中,以稳定碳并防止在可能导致晶间腐蚀的晶界处的碳化物降水。MVT测试被用作“通用”焊接性测试,旨在独立控制焊接参数和机械负载,该测试允许通过热裂缝数量和焊接样品的热裂纹长度评估和比较材料。在另一侧,从焊接的角度来看,据众所周知,钛对材料的可焊性具有有效的影响,7,但有关钛的这一方面的信息有限。Shankar等人。沿ti稳定的奥氏体不锈钢焊缝的裂缝和跨齿状区域验证了一般的高钛富集。认为,较高的钛含量会导致对晶界的种族隔离增加,这导致在这些地区形成更有害的次级相,后来可能有助于形成裂纹。此外,已知钛和其他分区元素在凝固过程中丰富了谷物和亚晶界。将这些元素分配到边界区域时,可以显着降低这些位点的有效凝固温度范围。8钛作为合金元素的另一个缺陷是其在电弧焊接过程中无法预测的氧化行为,这可能导致间质钛的消耗 - 从而降低了其稳定效果 - 与焊接金属中钛含量的发生结合。由于最近开发的合金825 CTP可以通过高级辅助冶金生产工艺实现非常低的碳含量,因此不需要钛的添加钛的目的
定义需要克服的需求或挑战 在该需求或挑战中,定义一个关键问题来构建想法讨论 在市场上对新技术或新兴技术或研究进行研究,或与客户一起确定关键机会或需求 使用小组规范方法产生想法,利用最佳实践,设定小组期望并促进讨论 使用标准评估助记符对产生的想法进行评估 对评估后的想法进行排序 选择最佳想法并使用“概念”模板进一步开发它们,这需要开发草图、流程图或其他描述性定义的想法以及主要特征和挑战,以及电梯游说,这提供了在讨论中描述性定义想法的能力 根据参与者的专业知识、技术可行性、影响、与原始挑战或需求的一致性和研究对概念进行排序
Florin Udrea是半导体工程学的教授,也是剑桥大学高压微电子和传感器实验室的负责人。Florin Udrea教授自1998年以来一直是剑桥大学工程系的学者。他目前正在领导一个在过去30年中赢得国际声誉的电力半导体设备和固态传感器的研究小组。UDREA教授在期刊和国际会议上发表了500多篇论文。他在电源半导体设备和传感器中拥有200多个专利。Prof. Florin Udrea founded five companies, Cambridge Semiconductor (Camsemi) in power ICs – sold to Power Integrations, Cambridge CMOS Sensors (CCS) in the field of smart sensors – sold to ams, Cambridge Microelectronics in Power Devices, Cambridge GaN Device in high voltage GaN technology and Flusso in Flow and thermal conductivity sensors.由于他对英国工程的杰出贡献,他获得了皇家工程学院的银牌。2015年,弗洛林·乌德雷(Florin Udrea)教授当选为皇家工程学院的院士。在2018年,Udrea教授获得了几项主要奖项,包括皇家学会的穆拉德勋章。 在2020年,他获得了Ohmi奖,作为ISPSD硅碳化物鳍片的合着者。 在2021年,他被《商业周刊》(Business Weekly)授予英国年度学术企业家。 在2022年,他第二次获得了OHMI奖,作为SIC FinFET Power Devices中的第一篇论文。在2018年,Udrea教授获得了几项主要奖项,包括皇家学会的穆拉德勋章。在2020年,他获得了Ohmi奖,作为ISPSD硅碳化物鳍片的合着者。在2021年,他被《商业周刊》(Business Weekly)授予英国年度学术企业家。在2022年,他第二次获得了OHMI奖,作为SIC FinFET Power Devices中的第一篇论文。在同一会议上,他还获得了与Cambridge Gan Devices Ltd的Icegan Smart Power设备开发的最佳海报奖。