目标 IIT Jodhpur 邀请申请为期一学期的人工智能 (AI) 和机器学习 (ML) 课程。人工智能已成为一项核心技术,对生产力产生了重大影响。根据印度政府 NEP 的广泛指导方针,我们为申请者提供了接受人工智能和机器学习正式课程的机会,以满足新兴人工智能技术对训练有素的人才的迫切需求。
遥感和机器学习的技术和方法论进步为推进野生动植物调查创造了新的机会。我们组建了一个实践社区(COP),以利用这些发展,以探索从管理层的角度来提高空中野生动植物监测的效率和有效性。COP的核心目标是组织遥感和机器学习方法的开发和测试,以改善支持管理决策的空中野生动植物种群调查。从2020年开始,COP合作确定了由野生动植物调查数据所告知的自然资源管理决策,重点是水鸟和海洋野生动植物。我们调查了我们的会员资格以建立1)他们使用野生动植物数量数据的管理决定; 2)在遥感/机器学习方法出现之前,如何收集这些计数数据; 3)过渡到遥感/机器学习方法学框架的动力; 4)从业者过渡到此框架时面临的挑战。本文记录了这些发现,并确定了朝着基于遥感的野生动植物调查迈向野生动植物管理方面的研究优先级。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
神经科学的当前趋势是使用自然主义刺激,例如电影,课堂生物学或视频游戏,旨在在生态上有效的条件下了解大脑功能。自然主义刺激招募复杂和重叠的认知,情感和感觉脑过程。大脑振荡形成了此类过程的基本机制,此外,这些过程可以通过专业知识来修改。尽管大脑作为生物系统是高度非线性的,但通常通过线性方法分析人类皮质功能。这项研究应用了一种相对健壮的非线性方法,即Higuchi分形维度(HFD),将数学专家和新手的皮质功能分类为在脑电图实验室中解决长期且复杂的数学示范。脑成像数据是在自然主义刺激期间长期跨度收集的,可以应用数据驱动的分析。因此,我们还通过机器学习算法探讨了数学专业知识的神经标志。需要新颖的方法来分析自然主义数据,因为基于还原主义和简化研究设计的现实世界中脑功能的理论的表述既具有挑战性又可疑。数据驱动的智能方法可能有助于开发和测试有关复杂大脑功能的新理论。我们的结果阐明了HFD在复杂数学期间对数学专家和新手分析的不同神经签名,并将机器学习作为一种有前途的数据驱动方法,以了解专业知识和数学认知的大脑过程。
这项研究深入研究了人工智能(AI)和机器学习(ML)的应用,以优化和管理现代通信网络。随着数据流量的指数增长以及网络体系结构的增加,网络管理和优化的传统方法证明是不足的。AI和ML提供了新颖的方法来通过实现智能,自适应和自动化网络解决方案来应对这些挑战。该研究探讨了各种AI和ML技术,包括受监督和无监督的学习,强化学习和深度学习,及其在交通预测,资源分配,故障检测和自我修复网络中的应用。它还解决了AI/ML算法与网络管理系统的集成,研究了与可扩展性,实时处理和安全性有关的问题。通过模拟和现实世界案例研究,该研究表明了AI和ML提高网络性能,降低运营成本并提高整体服务质量的潜力。这项工作强调了AI和ML对网络优化和管理的变革性影响,强调了它们在下一代通信网络发展中的关键作用。
David J. Huggins*剑桥大学,TCM集团,Cavendish实验室,19 J J J Thomson Avenue,Cambridge CB3 CB3 0HE,英国联合王国联合国联合国联合国中心,剑桥大学,剑桥大学,剑桥大学,剑桥大学,英国CB2 CB2 CB2 1EW,英国djh210@cam.ac.uk C. bio divem c. of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom philip.biggin@bioch.ox.ac.uk This author declares no conflict of interest Marc A. Dämgen Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom marc.daemgen@bioch.ox.ac.uk This author declares no conflict of interest Jonathan W. Essex School of南安普敦大学化学,南安普敦SO117 1BJ,英国救生科学研究所,南安普敦大学,南安普敦,SO17 1BJ,英国,英国J.W.essex@soton.acton.ac.ac.uk。 9JT,英国s.a.harris@leeds.ac.uk,该作者没有宣布的利益冲突Richard H. Henchman曼彻斯特生物技术学院,曼彻斯特曼彻斯特大学,曼彻斯特大学131号,曼彻斯特大学,M1 7dn,英国曼彻斯特化学学院M1 7dn,曼彻斯特,曼彻斯特,诺斯特郡,诺斯特,诺斯特郡,诺斯特。兴趣Syma Khalid化学学院,南安普敦大学,南安普敦SO17 1BJ,英国生命科学研究所,南安普敦大学,南安普敦SO17 SO17 1BJ,英国
摘要:在人工智能(AI)和机器学习(ML)技术的迅速发展之后,面部识别技术已成为生物识别领域内的重要研究重点。本文研究了AI和ML算法的最新进步,以提高面部识别的准确性和速度。首先,对面部识别技术的发展进行了全面审查。它可以追溯从传统方法到深度学习技术的应用,同时还总结了现有技术的优点和局限性。随后,本文中使用的关键技术在细致的情况下详细阐述了这些卷积神经网络(CNN),深度学习功能提取,转移学习,以及面部识别中的注意机制。在处理复杂的场景,不同的照明条件和遮挡情况时,这些显着增强了模型的处理能力。此外,本文对隐私保护和道德问题进行了探索,它提出了旨在在不损害身份绩效的情况下增强数据保护和隐私安全的策略。最后,这项研究的主要发现被封装,并概述了未来的研究方向。这项研究不仅为开发面部识别技术提供了理论的基础和实践指导,而且为促进AI技术在社会生活中的广泛应用铺平了道路。这些包括进一步优化算法以减少计算资源的消耗,开发更有效的数据增强技术以增强模型概括,并探索更广泛的应用程序场景,例如智能安全,个性化服务和可访问性辅助系统。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。