密码学长期以来一直是确保通信和保护隐私的工具。但是,其作用超出了技术实施,以涵盖重要的政治和道德方面。由埃里克·休斯(Eric Hughes)于1993年撰写的Cypherpunk宣言[7],强调了加密和拥护者的继承性政治本质,以此作为确保隐私和个人自由的一种手段。同样,菲利普·罗加威(Phillip Rogaway)的[10]工作强调了密码学家的道德责任,尤其是在大规模监视和社会影响的背景下。从根本上讲,密码学可以看作是“武装”群众保护自己的群众的一种手段。1993年的宣言和罗加威的作品强调了两个要点:不信任政府和保护集体数据。这种观点在戴维·乔姆(David Chaum)的思想中得到了回应,他提出了一个依靠强大加密来保护隐私的交易模型。尽管这些想法首次阐明了40多年,但保护社会免受信息滥用的梦想仍然很遥远。Chaum警告:
英国利兹大学利兹大学的地理学和水学院; B英国利兹大学土木工程学院B; C以色列贝特达根农业部土壤侵蚀研究站土壤保护部; D Kinneret Limnological实验室,以色列海洋学和林木研究,以色列米格达尔; E Zuckerberg水研究所,雅各布·布莱斯坦(Jacob Blaustein)的沙漠研究研究所,以色列内盖夫本·古里安大学; F Yorkshire Water Services Ltd,英国布拉德福德; G德国玛格德堡的Helmholtz环境研究中心水生生态系统分析与管理部; H英国伯明翰伯明翰大学地理,地球与环境科学学院; I IHCANTABRIA - 西班牙桑坦德市的de la la cantabria Instituto dehidráulicaInstituto; J布里斯托尔大学布里斯托尔大学工程,数学和技术学院J; K Escuela de Ingenieria y Ciencias,Tecnologico de Monterrey,墨西哥Nuevo
NYU上海是纽约大学全球网络中的第三级授予校园。这是中国的第一家高等教育合资企业,被授权授予在美国和中国获得认证的授予学位。所有教学均以英语进行。一所具有文科和科学的研究大学的核心,纽约大学上海居住在世界上拥有充满活力的知识分子社区的世界伟大城市之一中。nyu上海招募了最高才能的学者,他们致力于纽约大学对变革性教学和创新研究的全球愿景,并体现我们所生活的全球社会。
糖尿病足溃疡(DFUS)是糖尿病最常见且高度残疾的并发症之一,其特征是持续的脚步溃疡具有高感染率和截肢的风险,对患者生活质量和公共卫生系统构成了重大挑战(1)。根据数据预测,到2030年,全球糖尿病人口估计约为4.39亿(2)。在糖尿病患者中,大约30%的人会在其一生中出现足球溃疡(3),其中一部分患者因溃疡恶化而受到截肢的风险。研究表明,到2050年,三分之一的美国人将患有糖尿病,多达34%的糖尿病患者将在其一生中发展糖尿病足溃疡(DFU)(4)。DFU是成年糖尿病患者的严重并发症(5),一生中约有19%-34%的人足性溃疡,随着患者的年龄和医疗保健的复杂性,这种风险会增加(6)。DFU可以导致严重的结果,例如感染,截肢和死亡,在3 - 5年内复发率为65%(7),截肢率为20%,5年死亡率高达50%-70%(8)。尽管在多学科预防和早期筛查方面取得了进步,但在某些地区,截肢率却有所提高,尤其是影响年轻个人和少数群体,突出了DFU管理中的差异和不平等现象(9)。此外,糖尿病患者的免疫功能降低并降低了感染性(10),进一步增加了与DFU相关感染的风险(11)。在这些机制中,持续的炎症反应和组织受损(12)被认为是DFU的进展中的关键驱动因素。最近的研究表明,CXCR4基因在诸如细胞迁移,炎症调节和组织修复等过程中起重要作用(13),并且CXCR4的异常表达被认为是多种慢性条件下疾病进展的驱动力(14,15)。cxcr4在各种细胞类型(16)中表达,并通过其配体CXCL12调节细胞迁移,增殖和炎症反应(17)。研究表明,CXCR4在诸如DFU之类的慢性伤口中异常表达,可能导致
神经科学的当前趋势是使用自然主义刺激,例如电影,课堂生物学或视频游戏,旨在在生态上有效的条件下了解大脑功能。自然主义刺激招募复杂和重叠的认知,情感和感觉脑过程。大脑振荡形成了此类过程的基本机制,此外,这些过程可以通过专业知识来修改。尽管大脑作为生物系统是高度非线性的,但通常通过线性方法分析人类皮质功能。这项研究应用了一种相对健壮的非线性方法,即Higuchi分形维度(HFD),将数学专家和新手的皮质功能分类为在脑电图实验室中解决长期且复杂的数学示范。脑成像数据是在自然主义刺激期间长期跨度收集的,可以应用数据驱动的分析。因此,我们还通过机器学习算法探讨了数学专业知识的神经标志。需要新颖的方法来分析自然主义数据,因为基于还原主义和简化研究设计的现实世界中脑功能的理论的表述既具有挑战性又可疑。数据驱动的智能方法可能有助于开发和测试有关复杂大脑功能的新理论。我们的结果阐明了HFD在复杂数学期间对数学专家和新手分析的不同神经签名,并将机器学习作为一种有前途的数据驱动方法,以了解专业知识和数学认知的大脑过程。
摘要人工智能(AI)和机器学习(ML)正在彻底改变各个领域的人类活动,而医学和传染病并不能免除其快速和指数的增长。此外,可解释的AI和ML的领域已经获得了特别的相关性,并引起了人们的兴趣越来越大。传染病已经开始从可解释的AI/ML模型中受益。例如,在抗菌病毒预测和量子疫苗算法中,它们已被采用或提议更好地理解旨在改善2019年冠状病毒疾病诊断和管理的复杂模型。尽管有关解释性和可解释性之间二分法的某些问题仍然需要仔细关注,但对复杂的AI/ML模型如何得出其预测或建议的深入了解对于正确地面对本世纪传染病的日益严重的挑战变得越来越重要。
职业应用疲劳以及许多其他人类绩效因素,影响工人的健康状况,从而产生了生产质量和效率。采用行业5.0观点,我们建议将人类绩效模型整合到更广泛的工业系统模型中可以提高建模准确性并带来卓越的成果。将我们的工人疲劳模型整合为其工业系统建筑师模型的一部分,使领先的飞机制造商Airbus可以更准确地预测系统的性能,这是劳动力妆容的函数,这可能是人类工人和机器人的组合,或者是经验丰富且经验丰富且经验丰富且经验丰富的工人的组合。我们的方法证明了将人类绩效模型包括在商店地板上引入机器人的重要性和价值,可用于在工业系统模型中包括人类绩效的各个方面,以满足特定的任务要求或不同级别的自动化。
职业应用疲劳以及许多其他人类绩效因素,影响工人的健康状况,从而产生了生产质量和效率。采用行业5.0观点,我们建议将人类绩效模型整合到更广泛的工业系统模型中可以提高建模准确性并带来卓越的成果。将我们的工人疲劳模型整合为其工业系统建筑师模型的一部分,使领先的飞机制造商Airbus可以更准确地预测系统的性能,这是劳动力妆容的函数,这可能是人类工人和机器人的组合,或者是经验丰富且经验丰富且经验丰富且经验丰富的工人的组合。我们的方法证明了将人类绩效模型包括在商店地板上引入机器人的重要性和价值,可用于在工业系统模型中包括人类绩效的各个方面,以满足特定的任务要求或不同级别的自动化。
镍磷酸催化剂,遵循Tamao等人报告的程序。34电化学合成和环状伏安法(CV)在EG&G PAR 273型Potentiostat/galvanostat上进行。用饱和的钙胶电极(SCE)用作参考和铂金箔作为工作和反电极,用饱和的钙胶电极(SCE)用作。 用铬酸洗涤工作电极,然后用水洗涤,并将其抛光至CA的最终平滑度。 0.1 PRM,含氧化铝抛光粉,然后用蒸馏水和乙腈彻底冲洗。 在Perkin-Elmer 1610 FTIR光谱仪上记录了聚合物-KBR颗粒的红外光谱。 使用测量电导率。用铬酸洗涤工作电极,然后用水洗涤,并将其抛光至CA的最终平滑度。0.1 PRM,含氧化铝抛光粉,然后用蒸馏水和乙腈彻底冲洗。在Perkin-Elmer 1610 FTIR光谱仪上记录了聚合物-KBR颗粒的红外光谱。使用
遥感和机器学习的技术和方法论进步为推进野生动植物调查创造了新的机会。我们组建了一个实践社区(COP),以利用这些发展,以探索从管理层的角度来提高空中野生动植物监测的效率和有效性。COP的核心目标是组织遥感和机器学习方法的开发和测试,以改善支持管理决策的空中野生动植物种群调查。从2020年开始,COP合作确定了由野生动植物调查数据所告知的自然资源管理决策,重点是水鸟和海洋野生动植物。我们调查了我们的会员资格以建立1)他们使用野生动植物数量数据的管理决定; 2)在遥感/机器学习方法出现之前,如何收集这些计数数据; 3)过渡到遥感/机器学习方法学框架的动力; 4)从业者过渡到此框架时面临的挑战。本文记录了这些发现,并确定了朝着基于遥感的野生动植物调查迈向野生动植物管理方面的研究优先级。
