附件4摘要综合卡世界对能源的需求主要由非可再生资源满足,这对环境产生负面影响,因为它们有助于二氧化碳排放,温室效应和全球变暖。要促进替代清洁能源的开发,需要采取有效的策略。为此,能量杆代表了新建建筑物的有趣应用。能量杆是基础杆,与土壤相互作用的深度可用于开发低焓地热资源,还可以满足建筑物的能源需求。当杆配备了介导的管,直接连接到装甲笼,在内部,通过使用热泵,热电泵,热伏驱动器流体流动。这种液体能够与周围的地面交换热量,可让您在冬季加热建筑物并在夏季冷却,以减少和在某些情况下消除使用化石燃料。因此,能量杆满足了转移结构载荷(从结构到地面)和热量(从地面到结构)的双重任务,反之亦然。近年来,由于能源可持续性可获得的优势,这些系统的使用在公共和私营部门都构成了强烈的冲动,并且非常最新。论文分为七个章节和两个附录。在第1章中,概述了地球能源结构的主要特征。随后,注意力集中在能杆上。本章报道了艺术的状态,它参考了通过现场测试和实验室,数值分析和分析方法推导的杆子行为的主要特征,分组和分组。在第2章中,获得了能杆的最后一个极限状态的分析解决方案。这些解决方案代表了能量杆领域的绝对新颖性,并引起了几位杰出的研究人员对该主题的关注。在描述了所提出的模型后,对于均匀的土壤,BISINGURED和GIBSON的情况,以第二阶的微分方程的形式提出了运动曲线的数学表述。获得与温度变化所引起的轴向努力以及通过广义下土壤条件近似的轴向努力的确切溶液。最后,提出了弹簧的校准以及与实验数据和数值分析的比较。在第3章中描述了数值分析中使用的本构模型的数学结构。特别是,有或没有热部分的线性弹性模型,修改和型凸轮级的MOHR-COULOMB的配方。后者是由作者实施的,因此,在本章中,通过在排水且不排水条件下与三叠纪测试进行比较,可以验证该实现。在本章的最后一部分中,说明了随后的数值分析中使用的热力学配方。特别是,说明了轮廓条件,即用于杆和土壤的元素的类型和大小。 此外,还显示了杆的几何,机械和热特性以及土壤的机械和热土壤。 最后,提出了所使用的本构模型的校准,考虑到选择性模型被选为参考模型,以校准其他模型的参数。 第5章介绍了耦合的热力学热分析的结果。 随后,除了阐明头部键条件的选择外,还出现了极点和地面中的温度曲线。 对于自由极的条件,就轴向努力,下垂,平均变形和空点的位置讨论了每个构型模型的结果。 关于染色的极点,用轴向努力和平均变形描述了全局行为。,说明了轮廓条件,即用于杆和土壤的元素的类型和大小。此外,还显示了杆的几何,机械和热特性以及土壤的机械和热土壤。最后,提出了所使用的本构模型的校准,考虑到选择性模型被选为参考模型,以校准其他模型的参数。第5章介绍了耦合的热力学热分析的结果。随后,除了阐明头部键条件的选择外,还出现了极点和地面中的温度曲线。对于自由极的条件,就轴向努力,下垂,平均变形和空点的位置讨论了每个构型模型的结果。关于染色的极点,用轴向努力和平均变形描述了全局行为。此外,对于位于不同深度的极点界面的4个元素,还报告了响应,以体积和切割变形,间质压,局部下垂,偏离平面的努力以及Q-P计划中的加载路径的状态。本章的末尾致力于主要结果的综合。在第6章中,在单调热载荷条件下的分析方法和数值方法之间进行了比较。最后,报告了一种创新的迭代程序,用于据报道用于定义弹簧刚度的有效切割模块的估计。
空间框架技术在大跨度建筑中广泛使用已有 50 多年,因为它们在成本、灵活性和制造和安装速度方面具有诸多优势。随着技术和制造业的进步,空间框架在建筑中的应用越来越广泛。现在可以通过三维设计将“建筑师之梦”变成现实。使用 CoStruct 的专利球形接头,可以轻松实现几乎任何轮廓和表面。空间框架由一系列通过接头连接的杆组成,这些杆共同提供强大的抗外力能力。由于施加的负载分布在所有组件上,因此可以减轻结构的重量,减少钢含量,从而降低成本。如果其中一个组件损坏,这不会导致整个结构屈服,因为负载会重新分布到其他杆上以补偿损失。
2. QC 样品 — 通常是该批次研究样品的混合样品,理想情况下结合同位素标记的代谢物混合物(例如 CIL 的 QReSS 混合物 25 ),每 8-10 个研究样品后运行一次。使用混合 QC 样品的主要优势在于,它能够评估所研究的每种代谢物的保留时间和信号稳定性(图 6)。对于大批次,在运行过程中观察到一些信号丢失并不罕见,QC 样品数据可用于有效地应用信号校正算法。还建议在运行开始时运行 QC 样品稀释系列,例如未稀释、2 倍稀释、4 倍稀释和 8 倍稀释。这有助于确认所研究代谢物的线性响应。
新的EQP系列包含一系列高性能四极分析仪,适合各种等离子体分析任务。具有6 mm四极杆直径的EQP-6,质量范围为300和510 AMU,并基于Hiden Triple Filter Analyzer。EQP-9提供了最广泛的质量范围选择,用于高稳定性和质量传播。提供的范围是50、300、510、1000和5000 AMU。顶级范围是旗舰EQP-20,配备了行业前20毫米杆直径四极杆和独特的可切换双RF区域模式。EQP-20设计用于超高的质量分辨率实验,例如HE和D 2分开,以及最高200 AMU的超高稳定性分析。能量范围为100 eV作为标准,1000 eV是可选的。
本报告介绍了一项研究结果,该研究旨在探讨人工智能 (AI) 算法是否能通过使用安装在 Svegros 的一个罗勒农场上空的普通监控摄像头拍摄的图像来估算植物的高度,以及效果如何。该项目具有重要的经济意义,因为太高的罗勒植株不适合商店的货架,而太小的植株又会让顾客失望。这是 Svegro 一项更大运动的一部分,该运动旨在实现植物生长自动化监测和护理,降低能耗并减少浪费。为了测量高度,在摄像头下方的传送带上移动的植物后面放置了标尺(Robel 杆),这样就可以根据 Robel 杆上未被植物覆盖的可见线的数量手动确定植物的高度。研究问题是设计一种基于人工智能的解决方案来预测植物上方可见的线数。经过两个月的图像收集和手动注释后,使用来自罗勒田的单个 Robel 杆的图像训练了三个不同复杂度的卷积神经网络 (CNN) 模型。使用 Grad-CAM 获得的结果表明,网络不会学习数线,而是将叶子的大小和形状与高度关联起来。最佳得分是平均绝对误差 0.74 和均方误差 0.83,其中 MAE 为 2.53 和 MSE 为 11.11,这对应于仅预测数据集中值。这是使用 EfficientNet0B 实现的。将结果与人类的表现进行了比较,结果显示人类的表现仍然更好,但由于数据嘈杂,结果令人印象深刻,分数超出了 Svegro 团队的预期,因此最终模型现在在那里使用。实验还表明,即使训练图像中没有 Robel 杆,也可以获得相当好的结果,这意味着 Svegro 团队可以停止布置 Robel 杆,但精度会略有下降。提出了一些改进建议,例如改变 Robel 杆的设计,以帮助未来的研究以更高的精度完全自动化该过程。
I.应将耐腐蚀的金属框架结构固定在杆上,以保持SPV模块。II。 框架结构应具有配置,以便可以以合适的倾斜角度定向模块。 iii。 杆应按IS1161和IS4736即进行热浸镀锌管 B类。IV。 极高的高度在地面高度为5 m,在地面以下1 m。 灯具应至少高4.5 m。 V.杆应该有保留灯具的规定。 vi。 电池应包含在灯具外壳中,该电池应进行防水(IP 65)和耐腐蚀性,或在通风,防酸和耐腐蚀的,耐热的金属盒(IP 65)中的通风耐酸和耐腐蚀的弹药外壳中,并带有防theft锁定装置,以供户外使用。II。框架结构应具有配置,以便可以以合适的倾斜角度定向模块。iii。杆应按IS1161和IS4736即B类。IV。 极高的高度在地面高度为5 m,在地面以下1 m。 灯具应至少高4.5 m。 V.杆应该有保留灯具的规定。 vi。 电池应包含在灯具外壳中,该电池应进行防水(IP 65)和耐腐蚀性,或在通风,防酸和耐腐蚀的,耐热的金属盒(IP 65)中的通风耐酸和耐腐蚀的弹药外壳中,并带有防theft锁定装置,以供户外使用。B类。IV。极高的高度在地面高度为5 m,在地面以下1 m。灯具应至少高4.5 m。V.杆应该有保留灯具的规定。vi。电池应包含在灯具外壳中,该电池应进行防水(IP 65)和耐腐蚀性,或在通风,防酸和耐腐蚀的,耐热的金属盒(IP 65)中的通风耐酸和耐腐蚀的弹药外壳中,并带有防theft锁定装置,以供户外使用。
ISSN 1330-3651 (印刷版), ISSN 1848-6339 (在线版) https://doi.org/10.17559/TV-20201129072212 原创科学论文 巷道非直壁段锚喷支护力学模型及参数优化 程云海,李峰辉*,李刚伟 摘要:巷道锚喷支护一般采用梁模型计算,但巷道弯曲侧锚喷支护力学状态与直侧有明显不同。为了合理确定巷道弯曲侧锚喷支护参数,对喷层受力进行分析。将锚喷支护结构简化为固结梁与圆柱耦合的力学模型。为探明圆形巷道(或圆弧段)锚喷支护的力学机理,合理确定锚喷支护参数,对喷混凝土层进行应力分析。将锚喷支护结构简化为固结梁与圆柱体耦合的力学模型,结合摩尔-库仑强度理论,建立了喷混凝土层厚度、喷混凝土强度、锚杆间距、锚杆长度对围岩自承能力影响的力学模型,确定了锚喷支护参数与围岩自承能力的影响规律。研究结果表明:喷混凝土强度与围岩自承能力呈线性关系,喷混凝土厚度与围岩自承能力呈二次函数关系,锚杆间距、锚杆长度与围岩自承能力呈三次函数关系。研究成果对巷道曲线边坡锚喷支护参数的确定具有一定的指导意义。关键词:锚喷支护;筒体;力学模型1引言锚喷支护技术广泛应用于矿山、隧道、地铁等地下工程[1-6]。锚喷支护能最大程度地保持围岩的完整性和稳定性,充分发挥围岩的支护作用,对控制围岩的变形、位移、裂隙发展等起着重要作用[7-10]。国内外已有不少学者对锚喷支护技术进行了研究。李等[11-12]。[11]确定了喷层破坏时中性层的位置,探究了不同支护方式下锚喷支护参数与围岩自承能力的关系,建立了巷道围岩自承能力与锚杆间距、喷层厚度、喷层强度之间的力学模型。温等[12]建立了由系统锚杆支撑的外拱、喷层支撑内拱和钢框架组成的组合拱力学模型。王等[4]在对巷道围岩和喷层应力分析的基础上,建立了喷层厚度、喷层强度、锚杆间距对围岩自承能力影响的力学模型。方等[5]研究了喷层厚度、喷层强度、锚杆间距对围岩自承能力的影响。 [13] 设计了高预应力强锚喷支护方案,并利用振弦喷浆应力仪对方案实施后喷浆层的应力状态进行监测。吕建军等 [14] 提出了厚软岩巷道全断面锚固的二维半模型,建立了围岩及锚固系统的理论模型,得到了应力释放、锚杆与围岩耦合的分布规律。荆建军等 [15] 研究了预应力锚杆的力学性能
• 两根杆连接到一根销钉上。一根杆以 40 N 的力沿东方向拉动销钉,另一根杆以 60 N 的力沿西南 60° 方向推动销钉。 • 确定销钉上的合力和平衡力。 • 在使用力的平行四边形尝试解决这个问题之前,您必须将 60 N 的推力转换为沿相同作用线的拉力。该拉力由图中的虚线表示。
• 以十进制单位显示 17。有多少组十进制?还剩下多少个 1?• 排列 10 个十进制单位,并显示相当于一根杆。• 排列一根十进制杆,并显示相当于 10 个单位。• 用十进制块表示 45。有多少组十进制?还剩下多少个 1?• 用手表示 45。闪现四捆 10(“10、20、30、40”)。为每个 1 举起一根手指(“41、42、43、44、45”)。