Scielo预印本 - 此文档是预印本,其当前状态可在以下网址提供:https://doi.org/10.1590/scielopreprints.8185
溶解的O 2降低对浮游植物生理学的阳性或负面影响取决于光暴露的持续时间。为了揭示潜在的机制,海洋模型硅藻thalassira pseudonana在三个溶解的O 2水平(8.0 mg l -1,环境O 2; 4.0 mg L -1,Low O 2;和1.3 mg L -1,低氧)中进行培养,以比较其生长,蜂窝池组成和黑暗的生长,和物理学和黑暗周期。结果表明,环境O 2下的生长速率为0.60±0.02天-1,是光周期内生长速率的一半,在黑暗时期内增长率为15倍。降低O 2在光周期增加了生长速率,但在黑暗时期降低了它,并在光和黑暗时期都降低了细胞色素含量。在光中,低O 2增加了细胞碳(C)的含量,而缺氧则降低了它,而在黑暗中的增加和降低的程度更大。低O 2对细胞氮(N)含量没有显着影响,但缺氧降低了。低O 2对光合效率没有显着影响,但降低了黑暗呼吸率。在黑暗中,低O 2对细胞C损耗率没有显着影响,但n损耗率降低,导致POC/POC比率增加。此外,缺氧加剧了细胞死亡率和下沉,这表明硅藻衍生的碳埋葬可能会由于未来的海洋脱氧而加速。
a CSIC,全球生态单位 CREAF-CSIC-UAB,08913,贝拉特拉,加泰罗尼亚,西班牙 b CREAF,08913,Cerdanyola del Vall ` es,加泰罗尼亚,西班牙 c 捷克科学院全球变化研究所,Belidla 986/4a,CZ-60300,布尔诺,捷克共和国 d 巴塞罗那自治大学,08193,贝拉特拉,西班牙 e 进化与多样性与生物学实验室(UMR5174 EDB),图卢兹 3 保罗萨巴蒂尔大学,CNRS,IRD,118 route de Narbonne,图卢兹,法国 f 安特卫普大学生物系,Universiteitsplein 1,B-2610,Wilrijk,比利时 g 维也纳大学微生物学和环境系统科学中心,Djarssiplatz 1, 1030,维也纳,奥地利 h 冰岛农业大学,112 Keldnaholt,雷克雅未克,冰岛 i 巴塞罗那大学进化生物学、生态学和环境科学系,08028,巴塞罗那,西班牙
森林是宝贵的自然资源,为人类提供必不可少的服务。然而,全球变暖对森林碳和氮循环的影响仍然不确定。在这里,我们将总氮输入和积累的降低分别减少了7±2和28±900万吨(TG),并且由于化石燃料的社会在化石燃料的社会中变暖而使环境的反应性氮损失增加了2100。这将使全球碳汇的容量每年损害0.45±1.14亿吨。更重要的是,森林碳和氮气周期的变暖引起的不平等可能会扩大全球南方和全球北部之间的经济差距。高收入国家估计将从森林资产下获得1790亿美元的收益,而其他地区可能面临310亿美元的净损失。面对未来的气候变化,必须实施气候智能森林管理,例如综合修复和优化树种的组成。
湿的草原对于水和养分调节至关重要,其特征是不同的水,碳(C)和氮(N)动力学及其相互作用。由于其浅地下水桌,湿的草原促进了各种植被和土壤水之间的牢固相互联系。研究人员使用各种模拟模型研究了湿草地如何对环境变化的反应,以了解这些地点如何对水,C和N动力学贡献。然而,仍然缺乏对所有这三种动态的全面,同时研究。这项研究利用了具有不同管理的地下水水平的草原溶液仪研究,并采用基于过程的氮和碳动力学模型,以模拟这些动力学。通过使用斑点(统计参数优化工具)来优化相关参数,我们发现莫妮卡在模拟植被生长(地上生物量)和水的元素(蒸发)(蒸发性),C(总生产率,生态系统呼吸)和NITRISS nIrsrate nIrmass in nIrmass in Nitrys nitrys nitrys nitrys nitrys nitrys nitrys nitrys nitrys nitrys nitrys nitrys nitrys nitrys nitrys nitrys n nitrys n nitrys n nitrys n nitrys n Nitmote nistrantranse nistrantransive(蒸发)协议的精致指数始终大于0.35。这种准确性表明,莫妮卡准备应用于地下水管理和气候变化的场景,以评估其影响
气候变化对农作物和农业产量的影响是一个实际威胁,而这是一个充满挑战的问题,因为在农作物的局部规模上进行了介入的高度复杂性。对其进行评估,需要使用耦合模型气候 - 同时确定适合当地未来条件的管理和基因型的方法,以维持适应策略。我们介绍了基于区域脐带气候模型的新型集成气候适应支持建模系统的实施和使用,以及来自DSSAT平台的CERES玉米模型,并使用新的模块使用用于最佳管理和基因型识别的新模块:使用混合方法:确定性建模和-ML/ Genetic AlgorithM。它是作为罗马尼亚的区域飞行员运行的,与用户实时互动,进行农业气候预测(施肥,播种日期,土壤)并提供在气候变化预测下模拟的最佳作物管理。两个气候场景RCP4.5和RCP8.5和十二个管理场景的多模型集合模拟显示了该地区的新结果。对于实际基因型,我们发现在所有播种日期和测试的受精水平的气候情况下,预计平均降低产量的平均值下降,对初始土壤参数敏感的反应。这种反应与两个因素有关:较短的生长季节高达10%,并且在温暖的气候下施肥效率损失。对基因型的最高收获敏感性被证明是在温暖气候下分别为幼年为成熟阶段的热时间的变化。的警告指向结果显示农业收益的农业管理机会的范围狭窄,但在相反的情况下,最佳基因型范围识别的重要作用也可能在极端的几年中为气候变化提供农作物解决方案。在六个跨参数模拟的集合中识别最佳气候下的最佳基因型显示出最大产量的系统较低值,但强调了与实际气候相比,场景中中间产量值增加的基因型窗口。结果使用确定性耦合建模系统与数据驱动的建模相结合,以识别最佳适应性,包括施肥路径,这有助于缓解气候变化。
- 在所有三种氮处理中。在 90 天的实验期内,施用氯酸盐显著降低了 comammox Nitrospira amo A 和 nxr B 基因的丰度。氯酸盐还对 comammox Nitrospira clade B 群落的 β 多样性 (Bray-Curtis 相异性) 有显著影响。虽然 AOB 响应 N 底物的添加而生长并且被两种抑制剂抑制,但 AOA 对 N 底物或抑制剂处理几乎没有反应。相反,comammox Nitrospira clade B 受到尿液底物释放的高铵浓度的抑制。这些结果表明了三个氨氧化群落对 N 底物添加和硝化抑制剂处理的差异化和生态位反应。需要进一步研究这两种抑制剂对不同氨氧化群落的特异性。
番茄 (Solanum lycopersicum L.) 嫁接主要用于防止土传病原体的危害和非生物胁迫的负面影响,不过使用高活力砧木也可以提高产量和果实品质。在低养分投入农业的背景下,将优良品种嫁接到具有更高氮利用效率 (NUE) 的砧木上可支持直接的产量最大化策略。在本研究中,我们评估了使用过量表达拟南芥 (AtCDF3) 或番茄 (SlCDF3) CDF3 基因的植物作为砧木来提高低氮投入下嫁接接穗的产量,此前有报道称这些基因可提高番茄的 NUE。我们发现 AtCDF3 基因可诱导更多的糖和氨基酸产生,从而使生物量和果实产量在充足和有限的氮供应下都更高。相反,SlCDF3 基因没有发现积极影响。激素分析表明,赤霉素 (GA 4 )、生长素和细胞分裂素 (tZ) 可能参与 AtCDF3 对 N 的反应。这两个基因引发的不同反应可能至少部分与 AtCDF3 转录本通过韧皮部到枝条的移动性有关。在该嫁接组合的叶片中,我们持续观察到转录因子靶基因(如谷氨酰胺合酶 2 (SlGS2) 和 GA 氧化酶 3 (SlGA3ox))的表达较高,这些基因分别参与氨基酸和赤霉素的生物合成。总之,我们的研究结果进一步深入了解了 CDF3 基因的作用方式及其在嫁接方法中的生物技术潜力。
河口,沿海和近岸地区是连接陆地和海洋生态系统的关键区域。自然过程和强大的人为活性都会影响这些区域中的物质转化,能量流以及微生物和矿物质相互作用(Lazar等,2017; Cooke等,2020; Liu等,2020)。微生物群落是包括碳和氮在内的生物地球化学周期的主要动力之一,并且在河口,沿海和近海生态系统的生态平衡调节中起着重要作用(Shiozaki等人,2016年; Sohm等,2016)。由于微生物和生物地球化学周期之间的紧密相互关系,有必要对这些环境中的耦合机制和生态影响进行更深入的探索。这个跨学科的主题旨在了解微生物群落在有机物分解,营养转化和温室气体排放等过程中的作用(Lin and Lin,2022; Zhang等,2023)。通过研究这些关键过程背后的微生物驱动因素,我们可以深入了解河口,沿海和近海生态系统的功能和韧性及其对环境变化的反应。本研究主题中的七种文章涵盖了世界各地的各种环境,从河口和盐沼到海水和氧气最小区域,重点关注微生物社区特征以及相关的碳和氮气循环过程。niu等。本研究主题包括有关微生物分类学和功能性漏洞的研究,可以为微生物驱动的生物地球化学过程提供基本的理解。综合了有关分布模式,组装机制,共汇率关系以及细菌的生态功能的信息
这是以下文章的同行评审:Ficek M.,Dec B.,Sankaran K. J.,Gajewski K.,Gajewski K.,Tatarczak P.,Wlasny I.,Wysmolek A.,Wysmolek A.,Haenen K.,Haenen K.,Gotszalk T.,Bogdanowicz R.,Bogdanowicz R.,Bogdanowicz R.钻石增强碳纳米棒,高级材料界面,第1卷。8,ISS。 20(2021),2100464,已在https://doi.org/10.1002/admi.202100464上以最终形式出版。 本文可以根据Wiley使用自算版版本的条款和条件来将其用于非商业目的。 未经Wiley的明确许可或根据适用立法的法定权利的明确许可,本文可能不会增强,丰富或以其他方式转化为衍生作品。 版权声明不得删除,遮盖或修改。 该文章必须链接到Wiley在Wiley在线图书馆上的记录版本,并且必须禁止第三方通过平台,服务和网站提供任何嵌入,框架或以其他方式提供其文章或页面。8,ISS。20(2021),2100464,已在https://doi.org/10.1002/admi.202100464上以最终形式出版。本文可以根据Wiley使用自算版版本的条款和条件来将其用于非商业目的。未经Wiley的明确许可或根据适用立法的法定权利的明确许可,本文可能不会增强,丰富或以其他方式转化为衍生作品。版权声明不得删除,遮盖或修改。该文章必须链接到Wiley在Wiley在线图书馆上的记录版本,并且必须禁止第三方通过平台,服务和网站提供任何嵌入,框架或以其他方式提供其文章或页面。
