摘要 - 西葫芦是葫芦科家族,富含营养。在印度尼西亚,西葫芦的培养仍然很低,西葫芦具有开发的潜力。需要改进耕作技术,以确保西葫芦的最佳生长和产量。研究gberellin和氮肥对西葫芦植物生长和产量的研究。于2023年7月至2023年10月在印度尼西亚东爪哇省的Batu市进行。这项研究是使用带有两个因素的随机完整块设计的阶乘实验,第一个因素是gibberellin浓度,三个治疗水平(0、150和300 ppm),第二个因素是氮肥的剂量,具有5个治疗水平(50、100、100、100、150、200、200和250 kg/ha)。使用方差分析(ANOVA)分析了观察数据结果,并在5%的误差水平下持续诚实的显着差异测试HSD。确定观察变量之间的关系模式,进行了回归测试。结果表明,吉布雷蛋白和氮肥对西葫芦植物生长和产量的显着影响。植物长度,叶子数量,叶子面积,新鲜重量,干重,水果数量和果实重量的增加。氮肥导致植物长度,叶子数量,叶子面积,新鲜重量,干重,水果数量,水果重量和叶绿素指数的增加。这项研究的结果表明,吉布雷蛋白和氮肥在增加西葫芦植物的生长和产量中的阳性作用。基于这项研究的结果,建议最佳的吉伯林蛋白和氮为150 ppm和150-250 kg/ha。
。CC-BY-NC 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 1 月 12 日发布了此版本。;https://doi.org/10.1101/2022.12.20.521212 doi:bioRxiv 预印本
抽象背景患有肺动脉高压(pH)的人,尽管有可能减少呼吸困难和改善生活质量,但并未经常被转介进行运动康复。我们描述了针对患有pH的人的监督肺动脉高压运动康复(Sphere)计划的开发。方法开发分为三个阶段:(1)系统审查,(2)利益相关者与患者和专家的共识以及(3)预科干预可接受性测试。我们完成了系统评价,以确定国际心肺康复指导和针对pH患者的基于运动干预措施的试验。来自系统评价和利益相关者共识的证据塑造了领域的干预,包括增加个人行为支持会议以促进运动依从性。通过与多学科专业人员和享有pH的人的讨论,批准了球体干预草案。我们的可接受性测试了基于中心的干预措施,其中八名参与者处于预科发展阶段,该阶段确定了许多与安全性和恐惧避免活动有关的条件特定问题。制作了全面的干预从业者培训手册,以确保标准化交付。参与者的工作簿已开发并进行了试验。审判招募始于2020年1月,但随后于2020年3月被暂停,直到1920年的大流行“锁定”。响应大流行,我们进行了进一步的开发工作,以重新设计干预措施,以适用于仅基于家庭的在线交付。招募修订的协议始于2021年6月。讨论最终的球体干预措施纳入了每周家庭的在线团体练习和行为支持,由训练有素的从业人员监督的“教练”课程,并采用个性化的家庭锻炼计划以及固定锻炼自行车的可选贷款。该干预措施完全通过清晰的途径进行评估和个性化锻炼处方。当前在英国多中心随机对照试验中测试了Sphere在线康复干预措施的临床和成本效益。试验注册号ISCRTN10608766。
农业生态系统是地球上最大的人工生态系统,可提供全球66%的粮食供应。土壤微生物是用于碳和营养循环的发动机。然而,雨养农业生态系统中的受精和种植模式介导的土壤微生物群落结构以及碳和氮转化的驱动机制尚不清楚。该研究是在中国山西省的Changwu农业生态实验站进行的。设计了七种不同的施肥和种植模式。使用磷酸盐脂肪酸(PLFAS)来探索受精和镀层模式对土壤微生物群落结构的影响以及与土壤碳和氮的关系。结果表明,处理之间的土壤物理和化学特性存在显着差异。有机肥料显着增加了土壤碳和氮,并减少了土壤pH值。小麦和玉米旋转处理中总PLFA和微生物基团的含量最高。与种植模式的变化相比,有机肥料对PLFA含量和土壤生态过程的影响更大。土壤微生物群落结构与土壤有机碳(SOC),总碳(TC),总氮(TN)和总磷(TP)具有显着正相关。与施用NP肥料相比,使用有机肥料显着提高了土壤呼吸率和矿化氮含量,同时降低了土壤微生物生物量碳(MBC)。相关分析表明,土壤呼吸与SOC和TP显着相关,并且矿化氮与SOC,硝酸盐氮,TN和MBC显着呈正相关。结构方程模型(SEM)表明,土壤呼吸速率受到TC的显着积极影响,并受到SWC的负面影响,并解释了63%,而矿化氮显着受到TN的影响,并解释了总方差的55%。
有效微生物(EMS)和/或氮(N)的应用对植物对非生物应激条件具有刺激作用。本研究的目的是确定EMS和N的共同应用对生长,生理生物化学属性,解剖结构,营养获取,辣椒蛋白,蛋白质和渗透蛋白含量的含量,以及抗氧化辣椒(Capsicum annum annum L.)的抗氧化防御系统。在现场试验中,不应用EMS(EMS-)或应用(EMS +),三个N速率为120、150和180 kg N ha -1单位N ha -1(分别指定为N 120,N 150和N 180),以在盐水土壤中生长的热胡椒植物(9.6 ds ds m -1)。EMS和/或高N水平的应用减轻了盐引起的损害,以降低胡椒生长和产量。与用推荐剂量(EMS -×N 150)相比,与n150或n 180相比,将水果的数量,平均体重和果实的数量,平均体重和收益率增加了14.4或17.0%或17.0%或17.0%或17.0%或17.0%或17.0%或17.0%或17.0%或28.4或27.5%。与n150或n 180单独应用或结合使用EMS +时,辣椒素的积累增加了16.7或20.8%,蛋白质的蛋白质增加了12.5或16.7%,脯氨酸分别为19.0或14.3%,总计糖的总糖含量分别为3.7或7.4%,将其与处理的EMS相比,分别为3.7或7.4%。此外,抗氧化剂的非酶含量(抗坏血酸和谷胱甘肽)和酶活性(过氧化酶,超氧化物歧化酶和谷胱甘肽还原酶)
原子锁定硅中的位错,从而提高机械强度。[2,3] 用具有不同氧化态的各种元素掺杂硅的影响已得到充分证实。在碳材料中,通过化学取代可以带来物理和化学性质的显著变化。已知碳可以形成复合材料,并且可以掺杂各种材料,包括聚合物、金属氧化物、金属硫化物、金属氮化物、MXenes、金属有机骨架 (MOF) 等。[4–13] 然而,已经证明,用杂原子掺杂碳质材料可以改善各种性能,这是由于导电性增强、缺陷引入、孔隙率增强以及层间距离调整。近年来,一些报告强调了碳质材料在各种应用方面的进展,包括能源应用、传感应用和光伏应用。例如,2013 年,Thomas 和 Paraknowitsch 回顾了碳质材料的设计,并强调了它们在能源设备中的应用。[14] 根据该报告,S 和 P 掺杂导致碳基质中原子尺寸变化,引起结构扭曲和电荷密度改变
微生物坏死是土壤有机物的重要组成部分,但是它的持久性和对土壤碳固醇的贡献的量很差。在这里,我们投资了死灵剂与土壤矿物质的相互作用,并将其持久性与西北英国低层和高管理强度下的草地土壤中的植物垃圾相提并论。在1年的基于实验室的孵化中,我们发现植物叶窝的碳矿化速率高于根垃圾和坏死剂,但发现1年后碳持久性没有显着差异。在一个领域的实验中,大约三分之二的同位素标记的坏死量在3天内与矿物质相关。矿物质相关的碳的下降速度比氮的速度迅速,在8个月内,两者在增加的管理强度下的持久性持续增强。我们建议,碳矿化率与碳持久性解耦,而死灵量碳的持续性较小,而碳则不如核肿瘤氮,而农业管理强度会影响草原的农业隔离。
摘要:高κ电介质是介电常数高于二氧化硅的绝缘材料。这些材料已经在微电子领域得到应用,主要用作硅 (Si) 技术的栅极绝缘体或钝化层。然而,自过去十年以来,随着宽带隙 (WBG) 半导体的广泛引入,如碳化硅 (SiC) 和氮化镓 (GaN),后硅时代开始了,这为高κ材料在这些新兴技术中的应用开辟了新的前景。在此背景下,铝和铪的氧化物(即 Al 2 O 3 、HfO 2 )和一些稀土氧化物(例如 CeO 2 、Gd 2 O 3 、Sc 2 O 3 )是有前途的高κ二元氧化物,可用作基于 SiC 和 GaN 的下一代大功率和高频晶体管的栅极介电层。本综述论文概述了用于后硅电子器件的高介电常数二元氧化物薄膜。特别地,重点关注通过原子层沉积在 WBG 半导体(碳化硅和氮化镓)上生长的高 κ 二元氧化物,无论是非晶态还是晶体膜。讨论了沉积模式和沉积前或沉积后处理的影响。此外,还介绍了这些薄膜的介电行为,并报告了一些应用于 SiC 和 GaN 晶体管的高 κ 二元氧化物的示例。强调了这些技术的潜在优势和当前的局限性。
发布日期:2019年12月12日 |接受日期:2020年7月29日 |出版日期:2021 年 10 月 12 日 Andrea Carolina Pabón-Beltrán 哥伦比亚桑坦德工业大学 Orcid:0000-0003-3877-7678 Felipe Sanabria-Martínez 哥伦比亚材料科学与技术研究人员基金会:dio Vásquez 哥伦比亚桑坦德工业大学 Orcid:0000-0001-6563-0044 José José Barba-Ortega 哥伦比亚哥伦比亚国立大学 哥伦比亚材料科学与技术研究人员基金会 西班牙材料、应用和纳米结构中心 哥伦比亚材料科学与技术研究人员基金会 Orcid:0000-0003-4154-7179 * 研究文章 通讯作者。电子邮件:foristom@gmail.com DOI:https://doi.org/10.11144/Javerina.iued25.scpt
摘要 为了设计在极端条件下(包括长期太空任务)可靠运行的运动机械部件,需要对候选材料、表面处理和干膜润滑剂进行多元摩擦学评估。在本研究中,使用球对平试验收集了线性往复或单向滑动摩擦数据。球是硬化的 440C 不锈钢(未涂层或溅射 MoS 2),平面是 440C 不锈钢、Nitronic 60 不锈钢或 Ti6Al4V 钛合金,并经过各种表面处理和/或干膜润滑剂。表面处理包括阳极氧化、氮化和电火花加工。干膜润滑剂包括 Microseal 200-1、溅射 MoS 2 和纳米复合涂层 i-Kote。数据包含测试期间施加的法向载荷、测得的摩擦力、计算的摩擦系数、球位置、环境温度和相对湿度。测试在 300 至 2000 MPa 的不同峰值赫兹接触压力条件下进行。表面处理和干膜涂层后在 150 °C 下真空烘烤的平面以及在惰性气体(氮气)环境中测试的样品的数据也可用。这些数据既可用于从根本上了解不同材料系统的摩擦学特性,也可用于设计适合特定应用、条件和工作周期的组件。
