更好地了解影响和控制在海洋环境上方、上方或内部作业物流的过程:•波浪、温度、密度结构、海面高度、潮汐、雾、海冰、强流、内波、能见度、沿海河流羽流……开发知识最终可能改进环境预测模型,提供以小时到几周为时间尺度的预报。
气候变化是气候科学中的重要话题,近年来准确,高分辨率数据集的可访问性促进了从大数据资源中提取更多见解。尽管如此,目前的研究主要集中在均值变化上,并在很大程度上忽略了概率分布的变化。在这项研究中,开发了一种称为Wasserstein稳定性分析(WSA)的新方法,以识别概率密度函数(PDF)的变化,尤其是气候变化中极端的事件变化和非线性物理价值约束变化。WSA适用于21世纪初,并与传统的均值趋势分析相比。结果表明,尽管没有明显的趋势,但赤道东太平洋的炎热极端却下降了,极端极端的增加,表明LaNiña样温度变化。在两个北极位置进行进一步的分析表明,海冰严重限制了表面空气温度的热极端。随着海冰融化,这种影响正在减少。通过揭示PDF变化,WSA成为重新检查气候变化动态的有力工具,提供了增强的数据驱动的见解,以理解气候演化。
海冰和冰的融化不仅有助于海平面上升,而且还会改变水温度的盐度,影响调节地球气候的全球海洋循环模式。频繁和全球覆盖范围,卫星提供了地球冰冻圈的最佳信息来源。卫星还提供了整体研究极地区域的最佳手段,从而精确地测量了冰的程度和厚度。
全球变暖影响了格陵兰的气候,包括格陵兰冰盖(Gris),其外围冰川和冰盖(GIC)以及周围无冰的苔原(Bintanja&Selten,2014; Mernild et al。,2015; Shepherd&Wingham,2007; imbie Team,2020;北极扩增会导致绿地过度变暖(Zhang等,2022),降水降雨而不是下雪(Dou等,2019; Huai等,2021; Serreze等,2009)。对于强烈的气候变暖场景,降雨甚至有望成为北极降水的主要形式(Bintanja&Andry,2017年)。Screen和Simmonds(2012)表明,格陵兰降雪的减少主要是由于1989 - 2009年期间降水阶段的变化(降雪至雨)引起的,而总降水仍然在很大程度上恒定。dou等。(2019)发现,融化季节液体沉淀的增加是北极海冰融化的关键因素。详细了解降雪到降雨变化背后的过程也将有助于更准确地评估对水文学/径流,永久冻结,生态系统,海冰静修和冰川融化的影响(Bintanja,2018年)和链接的社会生态系统(McCrystall等人,20221年)。
2 熊的数量会减少。可能的想法包括:缺少雪意味着熊的伪装能力会下降,因此猎物会发现它们,而它们将得不到足够的食物;缺少海冰意味着熊的生存和繁殖空间会减少,使它们相互竞争,并且/或者意味着陆地周围地区的食物供应会因熊的数量增加而更快耗尽;温度升高意味着熊会过热。
摘要。机载雪深雷达观测数据(例如 NASA 的“冰桥行动” (OIB) 任务)最近已用于高度计得出的海冰厚度估计以及模型参数化。在北冰洋西部进行了许多比较机载和现场雪深测量的验证研究,证明了机载数据的实用性。但是,在北极的大西洋地区尚未进行验证研究。最近对该地区进行的观测表明,由于薄海冰上的深雪,雪冰状态发生了显著且主要的转变。在挪威年轻海冰、气候和生态系统 (ICE) 考察 (N-ICE2015) 期间,于 2015 年 3 月 19 日在斯瓦尔巴群岛北部地区进行了一项验证研究。这项研究在 OIB 飞越期间收集了地面真实数据。在二维 (2-D) 400 m × 60 m 网格上获得了雪和冰厚度测量值。从相邻浮冰现场收集的额外雪和冰厚度测量值有助于将在网格调查现场获得的测量值置于更区域性的环境中。由于相对较薄的海冰上普遍存在厚雪的情况,在 N-ICE2015 考察期间观察到了广泛的负干舷和积雪淹没。这些条件导致盐水渗入基底雪层并饱和。这导致机载雷达信号发生更多的弥散散射,从而可以很好地探测到雷达主散射地平线的位置
2-异常扩散●E。demirov-海冰变化对拉布拉多海洋环境的影响。● J. Fitzgerald - A simple model of the turbulence closure problem ● K. Poduska - Physics for climate change mitigation ● L. Zedel - Ocean noise in Labrador Sea ● A. Yethiraj - Intensity fluctuation microscopy of soft materials ● S. Curnoe - Entanglement and concurrence in quantum systems ● Q. Chen - Photonic materials, devices & applications ● S. Wallin -拥挤的环境中的蛋白质折叠
北冰洋(AO)环境恶劣,温度低、冰盖大、海冰周期性冻结和融化,为微生物提供了多样化的栖息地。前期研究主要基于环境DNA对北冰洋上层水体或海冰中的微真核生物群落进行研究,而对北冰洋多样化环境中活跃微真核生物的组成成分则知之甚少。本研究通过对共提取的DNA和RNA进行高通量测序,对北冰洋从雪冰到1670 m深度海水范围内的微真核生物群落进行了垂直评估。与DNA提取物相比,RNA提取物能更准确地描述微真核生物群落结构和类群间相关性,对环境条件的反应也更为敏感。使用RNA:DNA比率作为主要分类群相对活性的代表,确定了主要微真核生物群落沿深度方向的代谢活性。共现网络分析表明,深海中的 Syndiniales 和甲藻/纤毛虫之间的寄生关系可能很重要。这项研究增加了我们对活跃微真核生物群落多样性的认识,并强调了使用基于 RNA 的测序而非基于 DNA 的测序来研究微真核生物群落与微真核生物对 AO 环境变量的反应之间的关系的重要性。
当全球气温超过工业化前水平 1.5°C 时,不可逆转的变暖将成为现实,因为地球上的一些景观将成为碳的净排放源(如永久冻土)或变暖的加速器(如海冰的消失)。世界经济论坛出版物《边缘商业:打造行业应对气候灾害的韧性》详细介绍了地球系统临界点 14 及其对景观、供应链和社会商业风险的影响。在这个人类世的新时代,未来几十年引发的变暖将影响地球数千年的气候(见图 6),因此了解和应对地球系统破坏已成为全球当务之急。