摘要 - 湿度测量在日常生活中至关重要,因为它们会影响人类的舒适性,健康,安全性和产品质量。石英晶体微量平衡(QCM)传感器以其快速响应时间和高灵敏度而闻名,由于其能够提供高度线性和准确的测量功能,因此在湿度传感方面具有显着优势。这些传感器特别有价值,因为它们可以实现实时,精确的湿度检测,并最少校准,从而使其非常适合各种应用。这种迷你审查强调了QCM传感器的重要性,重点是集成到复合矩阵中的纳米材料填充剂制成的传感层。典型的QCM传感器表面可以用高导电材料(例如石墨烯,氧化石墨烯(GO)和硼苯)覆盖,它们由于其二维同素异质结构以及碳和硼的独特特性而具有出色的湿度感应能力。本综述始于湿度测量原理和QCM传感器特征的简要概述。然后,它探讨了用于准备QCM传感层的各种材料,讨论了它们在湿度传感器应用方面的优势和缺点。最后,评论介绍了关于逐层自组装的导电聚合物膜的发展的未来观点,基于新型GO的复合QCM湿度传感器和基于硼苯的湿度传感器,说明了它们对多功能复合材料的潜力。
该电池系统中的石墨电极在66 mA g -1的电流密度下显示出70 mA H G -1的可逆特异性c。7随后,带有离子液体电解质的铝离子电池已受到广泛关注。为了增强该系统中铝离子电池的能量密度,研究人员主要致力于搜索具有高压平台,高可逆能力和良好循环稳定性的阴极材料。近年来,包括金属suldes在内的各种材料(MOS 2,8 CO 3 S 4(参考9),金属氧化物(Co 3 O 4,10 SNO 2,11 Tio 2(参考12),金属磷酸盐和磷酸盐(Cu 3 P,13 Co 3 PO 4(参考14),导电聚合物(PANI),15个碳材料(碳纸),16个和基于石墨的材料17,18已被广泛研究为用于铝离子电池的阴极材料。在这些材料中,基于石墨的材料已被广泛研究,因为它们的最高电压高原在2 V vs. Al/Al 3+和稳定的循环性能。但是,石墨的相对较低的特定能力限制了其商业应用。为了提高石墨的特定能力,研究人员主要集中于建造具有高表面积的特殊形态,并引入了多个缺陷和纳米级空隙。例如,Zhang等人。合成的聚噻吩/石墨复合材料,其具有较大表面的层状结构可容纳氯铝酸酯(ALCL 4-)。19在1000 mA g -1的电流密度下,其特征容量达到113 mA h g -1。另外,Lee等人。制备的酸处理的膨胀石墨(AEG)和碱蚀刻石墨(beg),它们具有涡轮结构和无序结构,
众所周知,连贯的光是可实现的最稳定的经典光,它表现出泊松统计分布。shot噪声代表了这种固有的随机性的极限,并与使用pois-sonian光源发射的光子的时间分离相关。因此,一个更正常或次佛森的光子流揭示了基础辐射过程的量子性质。1在任何给定时间发出不超过一个光子的完美常规光源,称为单光子源(SPS),代表了各种量子技术的必不可少的构建块,包括量子计算方案,玻色子计算方案,玻色子采样,精确的Metrology,Precision Metrology,以及安全的通信应用以及量子密钥分布,例如量子密钥分布。2–6
被发现位于SWNT-BN的B原子上,SWNT-C上的C-C = C上。该观察结果强调了B原子在SWNT-BN中接受电子的能力以及SWNT-C中碳原子之间的π键的定位。此外,对于DWNT,特别是DWNT-BN,HOMO位于内壁(IW)和外壁(OW)的N原子上,而Lumo则位于IW和OW中的B原子上(见图2(E,F)。 相比之下,对于DWNT-C,HOMO位于IW的碳原子上,而Lumo位于OW的碳原子上(见图 2(g,h)。 这种区别强调了碳原子在IW中作为电子供体和碳原子作为电子受体的作用。 这些数字还展示了掺杂的DWNT-C变体的同性恋和Lumo mos。2(E,F)。相比之下,对于DWNT-C,HOMO位于IW的碳原子上,而Lumo位于OW的碳原子上(见图2(g,h)。这种区别强调了碳原子在IW中作为电子供体和碳原子作为电子受体的作用。这些数字还展示了掺杂的DWNT-C变体的同性恋和Lumo mos。
摘要:由于量子技术在量子技术中的潜在应用,六角形氮化硼(HBN)的颜色中心已成为经过深入研究的系统。已经制造出了各种各样的缺陷,但是对于许多缺陷而言,原子来源仍然不清楚。缺陷的直接成像在技术上非常具有挑战性,特别是因为在衍射有限的位置,有许多缺陷,然后必须识别出光学活动的缺陷。另一种方法是将光物理特性与理论模拟进行比较,并确定哪个缺陷具有匹配的签名。已经证明,单个属性不足,导致错误弥补。在这里,我们发布了一个基于功能理论的密度可搜索的在线数据库,涵盖了HBN缺陷的电子结构(257个三重态和211个单元配置),以及它们的光物理指纹(激发态态寿命,量子效率,过渡偶极时间和方向和方向,极化可见度等)。所有数据都是开源的,可以在https://h-bn.info上公开访问,并且可以下载。可以输入实验观察到的缺陷签名,数据库将输出可能的候选物,可以通过输入尽可能多的观察到的属性来缩小候选物。数据库将不断更新,并具有更多的缺陷和新的光物理属性(任何用户也可以专门要求)。因此,数据库允许一个人可靠地识别缺陷,还可以研究哪些缺陷对于磁场传感或量子存储器应用可能有希望。
TO THE EDITOR: High dose chemotherapy followed by autologous stem cell transplantation (ASCT) has been considered the standard of therapy for younger fi t patients with newly diagnosed multiple myeloma (MM), since several randomized trials demonstrated a survival bene fi t for ASCT compared to conventional chemother- apy, even in the era of novel induction triplet and quadruplet therapy regimens [ 1 – 3 ].在高剂量的Melphalan后,需要收集和重新收集2×10 6 CD34 +细胞/kg,以确保在ASCT之后进行足够的造血重建。此外,在第一次复发时,可以在第一线治疗或挽救ASCT上进行多个骨髓瘤患者的显着比例,因此最佳目标是收集至少4×10 6 CD34 +细胞/kg [4]。趋化因子受体拮抗剂plerixafor通常按需用作动员不良的患者的营救[5]。daratumumab是一种人IgG单克隆抗体,其靶向克隆等离子体细胞,具有直接肿瘤和免疫调节的作用机制[6]。在II期Grif Fif Fif Fife试验中,首先研究了基于Daratumumab的组合诱导疗法对符合移植有资格的新诊断的MM患者的临床效率和安全性[7]。In the phase III CASSIOPEIA study, daratumumab plus bortezomib, thalidomide and dexamethasone (D-VTd) showed a signi fi cantly improved progression free-survival (PFS) and MRD-negativity rate compared to VTd and, currently, D-VTd represents the standard of care in Europe for newly diagnosed transplant eligible MM patients [ 8 ].daratumumab暴露与较低的中位干细胞产量和更频繁的plerixa有关,而没有对ASCT后造血干细胞重新机构产生重大影响[9]。daratumumab靶标也在CD34 +造血祖细胞上,众所周知,动员的CD34 +细胞对于ASCT至关重要。daratumumab可能参与CD34 +细胞上的CD38表达,可能会影响动员动力学和谱系 - 特异性祖细胞增殖能力。考虑到炎症过程中CD38在促进白细胞运动中的作用,daratumumab可能会通过骨骨髓微环境的附庸内皮来干扰CD34 +干细胞的尿症,从而阻止其在动员信号后的外围血液中的传播[10]。
摘要:通过血脑屏障(BBB)输送药物是一个重要的挑战。尽管目前采取了BBB规避的策略,但纳米技术仍提供了前所未有的选择性,用于结合选择性递送,改善生物利用度,药物保护和增强的药代动力学专业生物。壳聚糖纳米载体允许在细胞和亚细胞水平上制定更有效的策略。硼中子捕获疗法(BNCT)是一种靶向化学放射性治疗技术,可以通过选择性标记为10 B的癌细胞选择性耗尽癌细胞,然后用低能中子进行照射。因此,封闭有效BNCT药丸团的基于聚合物的纳米递送系统的组合可能会导致选择性递送到BBB以外的癌细胞。在这项工作中,评估了基于Carborane官能化的Decalizatizational decalizatizatization型的生物染色阳离子(DLC)的合成的新型硼酸化剂,以确保肿瘤细胞的安全性和选择性靶向。然后将化合物封装在壳聚糖构成的纳米载体中,以通过BBB促进渗透性。此外,将壳聚糖与多吡咯结合使用,形成智能复合纳米胶囊,预计将释放其药物负荷,并在pH中变化。结果表明,通过Carboranyl DLCS实现了更具选择性的硼递送。最后,初步细胞研究表明,在壳聚糖纳米胶囊中未检测到毒性,从而进一步增强了其作为脑肿瘤BNCT潜在递送载体的生存能力。
5E Advanced Materials,Inc。(NASDAQ:FEAM)(ASX:5EA)着重于成为垂直整合的全球领导者和硼特种和高级材料的供应商,并得到了锂共同产品生产的补充。该公司的使命是成为针对全球脱碳,粮食和国内安全的行业的这些关键材料的供应商。硼和锂产品将针对电动运输,清洁能源基础设施(例如太阳能和风能,肥料和家庭安全)领域的应用。业务策略和目标是开发能力,从上游提取和硼酸,碳酸锂以及潜在的其他副产品到下游的硼龙先进材料处理和开发等能力。该业务基于我们的大型国内硼和锂资源,该资源位于南加州,并被国土安全部的网络安全和基础设施安全局指定为关键基础设施。
简介 - 对超智材料的改造的兴趣不仅是由科学的古怪驱动的,而且是由于几种工业应用中的技术兴趣越来越多[1,2]。钻石据报道,维克(Vicker)的硬度(V H)为120 GPA,迄今为止所有已知材料的记录都持有记录,但其在高温下的化学反应性和高生产成本限制了其实际可用性。对当前替代方案的改进,例如立方-BN(C-BN)或Cubic-BC 2 N [3-5]和金属硼化物[6-8],它们也呈现出严重的限制问题,例如高综合价格或有限的硬度,都在强烈寻求。硼,碳,氮和氧及其化合物等元素的相图代表了一个理想的狩猎场,可以通过Ab-Initio方法来探索潜在的超级材料的晶体结构预测(CSP)和高通量(HT)屏幕(HT)屏幕,这是快速扩展物质研究的范围[2-15-15-15]。在本文中,将晶体结构预测(最小值)[16,17]和高吞吐量筛查技术结合在一起,与硼碳(B-C)相图相结合,我们发现了一个新的型亚稳态硼和硼含量的碳结构的新家族,并与这些杂种富含碳纤维相比。硼化物。[18]术语所建议的融合的硼苯融合可以看作是通过共价键相连的2D硼层的不同类型的堆叠,形成了3D散装结构。在以下内容中,讨论了超智融合的一般elastic和热力学特性与高压α-GA相结构相关,被认为是在160 GPA以上的硼中观察到的最有可能解释的候选者[19-21],FBS理想地代表了两个已知的硼结构家庭缺失的联系:2d Boron Monoo-and Boron-Mono-and Borayers和Boryers(Boryers(Boropheres)(boropheres)(boropheres)[22- bor bulk and bore)[22-2-2-2-2-2-2-2-2-2-2-2-2-2-4]二十面体单元,例如α,β和γ硼[23,25,26] FBS在环境条件下可稳定,但是我们的计算表明,从高压中进行淬火可以用来稳定一些最有竞争力的阶段。