随着测试活动的成功完成和飞机原型的准备就绪,我们离实现使命越来越近了。我们与红十字国际联合会就东非任务训练的未来发展达成一致。我们从获得诺贝尔奖的世界粮食计划署航空部门收到了一封意向书。重要时刻。荷兰议会讨论了国际合作预算,并预留了 500 万欧元用于资助我们的运营验证计划。没有比这更好的方式来结束这激动人心的一年了。
• 将机翼前缘向后掠,无论是后掠翼还是三角翼,并减小外翼部分的迎角,使其作用更像传统的尾翼稳定器。如果沿着外翼部分的翼展逐渐这样做,则称为翼尖后掠。机翼的外翼部分现在充当传统的尾翼,在平飞时,飞机应进行调整,使翼尖不产生任何升力:它们甚至可能需要提供一点下推力。这会降低机翼的整体效率,但对于许多设计(尤其是高速设计)而言,与传统稳定器相比,阻力、重量和成本的降低可以抵消这一影响。这种方法是由英国飞行员 JW Dunne 在 20 世纪初开发的,但直到喷气时代才得到广泛使用。自 Dunne 以来,这种方法通过使用低或零俯仰力矩翼型得到了增强,例如在 Horten 系列滑翔机和战斗机中看到的。
显著 [4]。这对于所介绍的飞机尤其重要,因为航程越短,这三个飞行阶段与巡航的比率就越高。另一个优点是由于 C 翼的重量而导致的机翼载荷和弯矩减小。由于机翼上部和垂直部分的向下力和侧向力,弯矩进一步减小。这种配置增加了尾流涡的消散率,从而可以增加机场每小时的起飞和着陆次数。此外,另一个重要优势是可以制造无尾飞机 [5]。几篇论文解释了非平面配置的好处,并将 C 翼与各种翼尖小翼或平面配置进行了比较。与翼尖相比,通过增加 20-30% 的机翼质量,可以减少巡航总阻力 3% [4]。C 翼的形状必须在整个飞行任务的优化过程中确定 [6, 7]。
图 21 翼尖有垂直尾翼时升阻比与偏航角及 AOA 相互作用。 57 图 22 垂直尾翼位于机翼侧面时偏航角和 AOA 对升阻比的相互作用......................................................................................................................... 58 图 23 垂直尾翼位于翼尖时 AOA 和偏航角对 CYM 影响的 3D 绘图......................................................................................................................... 58 图 24 垂直尾翼位于机翼侧面时 CYM 的 AOA 和偏航角 3D 绘图......................................................................................................................... 59 图 25 推进分析中电流和 AOA CD 影响的 3D 绘图..................................................................................................................... 5 ........................ 61 图 26 未使用推进系统时 A O A 对 CL 的影响 .............................................................. 61 图 27 带推进系统且电流 = 10 AMPS 时 A O A 对 CL 的影响 ................................................................................................................ 62 图 28 未使用推进系统时左侧控制面偏转对 C RM 的影响 ................................................................................................................................ 63 图 29 带推进系统且电流 = 10 AMPS 时左侧控制面偏转对 C RM 的影响 ................................................................................................................
Lucky Seven 将是一枚长 9 米、翼尖间距 3 米的锥形火箭。在发射和着陆时,火箭将由四个固定的腿翼支撑,每个腿翼高 5 英尺。这些腿是支撑推进系统、加压舱和鼻锥/回收系统的金属框架的一部分。垂直发射时,主发动机将燃烧 90 秒,之后火箭将在 100 公里高度标记后继续滑行 100 秒。乘客将体验大约三分半钟的失重状态 - 从发动机关闭到火箭重新进入大气层。重返大气层后,将展开减速伞以减缓上升速度。当空气变稠时,将展开翼伞。然后,航天器将使用全球定位系统卫星导航系统返回发射场,滑行至垂直着陆。
柯林斯航空继续走在冰检测技术的前沿。我们的磁致伸缩冰检测技术提供灵活、坚固的设计,可在各种结冰环境中检测冰。该技术能够检测到小至 0.001 英寸的积冰,同时对各种类型的污染不敏感。我们的传感元件具有高收集效率,相对于飞机表面具有出色的灵敏度。针对冰检测和结冰严重程度的优化设定点可在早期检测和最小化防冰操作之间取得平衡。冰检测器的结冰严重程度和液态水含量测量值可提供给防冰控制器,以调节和优化防冰系统的控制。
第三个模型是 YF-17 的 0.30 比例半跨度模型。分离器吊架与 F-16 模型上使用的基本上相同。它位于机翼下方的翼尖处,并支撑 AIM-7S 导弹。通过分离器吊架,该模型还展示了高于颤振动态压力的动态压力大幅增加。