摘要:孕酮(Prog)和雌激素(E 1)是奶牛中的典型生殖激素。评估体内这些激素的水平可以有助于发情识别。在当前的工作中,使用Terahertz时域光谱法(THZ-TDS)和超材料技术对Prog和E 1进行定性和定量检测的可行性进行了初步研究。首先,收集并分析了PROG和E 1样品的时域光谱,频域光谱和吸收系数。使用密度功能理论(DFT)进行了振动分析。随后,使用CST Studio Suite(CST)软件中的频域解决方案算法设计和模拟了双环(DR)超材料结构。这旨在确保DR的双共振峰与Prog和E 1的吸收峰相似。最后,对DR对不同浓度的PROG/E 1的响应进行了分析并进行定量建模。结果表明,可以通过比较Prog的相应DR共振峰变化和E 1样本以各种浓度进行定性分析。PROG定量模型的最佳R 2为0.9872,而E 1为0.9828。这表明Terahertz光谱 - 超材料技术用于定性和定量检测典型的生殖激素Prog和奶牛中的E 1是可行的,值得探索。这项研究提供了鉴定奶牛发情的参考。
可充电锌空气电池(ZABS)被认为是在便携式电子,电动汽车和电化学能源存储技术中最有前途的候选者之一,因为它们的高能量密度,环境友好,低成本和出色的安全性。1特殊的高能量密度归因于图1 A所示的无限氧气量,而能量仅受金属Zn(820 a H kg -1)的限制。然而,实际使用Zn-Air电池会面临几个问题,包括实际容量低,能源效率差和循环稳定性不足。一方面,Zn电极在操作过程中引起了一系列挑战,包括钝化,树突和氢的演化,这导致了较低的Zn利用率和较差的循环稳定性。另一方面,空气电极上的催化剂对氧气的电化学反应的催化活性不足,这直接导致高电势和低能效率(〜60%,排放:〜1.2 V,电荷,电荷:〜2.0 V)。2因此,最近的研究强调了两个关键领域:Zn电极的复杂工程以及用于氧还原反应(ORR)和氧气演化反应(OER)的贵族无金属双功能催化剂的发展。3尽管在小型实验室电池系统中展示了令人鼓舞的结果,但将这些进步转移到广泛的实际应用中带来了重大挑战。
lubrizol Advanced Materials,Inc。(“ Lubrizol”)希望您找到了提供的信息,但是您警告您,该材料(包括任何原型公式)仅用于信息目的,并且独自负责自己对信息的适当使用进行评估。在适用法律允许的最大范围内,Lubrizol不做任何陈述,担保或保证(无论是明示,暗示,法定还是其他),包括对特定目的的适销性或适用性的任何暗示保证,或任何信息的完整性,准确性或及时性。lubrizol不能保证此处参考的材料将如何与其他物质一起执行,以任何方法,条件或过程,任何设备或非实验室环境中的任何方法,条件或过程。在包含这些材料的任何产品进行商业化之前,您应该彻底测试该产品,包括产品包装的方式,以确定其性能,功效和安全性。您对您生产的任何产品的性能,功效和安全性负责。lubrizol不承担任何责任,您应承担所有使用或处理任何材料的风险和责任。所有司法管辖区都不得批准任何索赔。任何与这些产品相关的索赔的实体均负责遵守当地法律和法规。您承认并同意您正在使用此处提供的信息自负。如果您对Lubrizol提供的信息不满意,则您的独家补救措施将不使用信息。未经专利所有人许可,本文中没有任何内容作为许可,建议或诱因,以实践任何专利发明,而您的唯一责任有责任确定是否存在与专利侵犯与所提供信息有关的任何组件的专利侵犯或组合组合有关的问题。
高效的硬件-细胞通信对于理解细胞状态和控制细胞至关重要,是推进下一代人机界面的关键途径。在这里,我们提出了一种基于天然纤维素的节能神经装置,解决了传统接口通信硬件的局限性,特别是在材料生物相容性和生物信号匹配方面。基于纤维素的装置有效地模拟了生物突触连接的可塑性,并在低至 10 mV 的连续脉冲刺激下表现出学习行为。值得注意的是,它表现出卓越的数模转换性能,最低功耗为 0.1 nJ,有助于实现高效的界面生物信号匹配。此外,引入了一个分子级模型来阐明电刺激引起的纤维素分子内极性键的旋转。这种旋转改变了材料的相对介电常数,揭示了数模转换能力和类似神经的行为。此外,透明纤维素薄膜既可作为介电层,又可作为机械支撑,使设备能够在各种曲率下保持功能稳定性。这项研究中,基于纤维素的灵活且生物相容性的神经装置不仅可以有效地模拟突触,而且由于其低功耗信号转换,有望在脑机接口应用中实现有效的生物信号匹配。
作为人类历史上最广泛使用的草药,以及针对各种病原体和非生物胁迫的植物中主要的防御激素,水杨酸(SA)引起了主要的研究兴趣。在过去30年中,现代技术机构的应用,对SA对植物生长,开发和防御的影响的研究揭示了许多新的研究领域,并继续带来惊喜。在这篇综述中,我们提供了了解植物免疫中SA代谢,感知和信号转导机制的最新进展。出现了一个总体主题,即SA通过多个步骤中的复杂调节执行其许多功能:SA生物合成在本地和系统上都受到调节,而其感知是通过多个细胞靶标进行的,包括代谢酶,氧化还原调节剂,Tran Scription cofactors,tran Scription Cofactors,以及最近的RNA结合蛋白。此外,SA还协调了下游信号分量的一系列复杂的翻译后修饰,并促进了作为细胞信号轮毂起作用的生物分子冷凝物的形成。SA还通过与其他植物激素串扰影响更广泛的细胞功能。展望未来,我们提出了探索SA功能的新领域,这无疑会发现未来多年的更多惊喜。
摘要。微电网是小型网络,由几种可再生能源组成,例如风光,阳光,地热,生物能源,水等。,但是该系统的缺点是在波动的力量,当源在一定时间不会产生功率时。因此,当源无法提供足够的负载时,需要电源媒体(例如电池和超级电容器)来保持意外情况。这项研究的目的是对使用电池添加超级电容器并在没有超级电容器的情况下比较电池存储介质的效果。从研究的结果中发现,超级电容器的添加可以将电池稳定性从50%的充电状态(SOC)降低到47%,然后开始时,它在1秒时将其增长了50%,并且可以将其他充电设置为我们的喜好。如果电池存储介质没有超级电容器,则电池充电往往会从50%下降,并且继续下降而没有任何增加。因此可以得出结论,加上超级电容器能够维持微电网系统中电池的性能。1简介微电网是由许多分散能源组成的小型独立电源系统。将可再生能源整合到当前电网中是一个明智的举动,因为它由电荷和存储设备组成[1]。通过微电网将风和太阳能整合到分布网络中,被广泛认为是使用环境可再生能源的成功策略。然而,微电网的大小很小,自我调节的能力较差。因此,由于主动功率和电压稳定性的平衡[1] [13]非常容易受到风与太阳能输出功率的变化以及用户能源需求的变化,因此必须解决微电网操作的关键问题。为了克服电力供应和负载的波动,现在正在开发储能技术。一种智能解决方案是将不同类型的储能存储的优点结合到一个混合系统中。结合了一包超级电容器和锂离子电池包的配置,能够覆盖每种存储的弱点,同时利用两种互补的优势[2] [14]。超级电容器为应对瞬时负载变化提供了即时功率,而锂离子电池则存储了大量能量以进行长期备份。因此,该混合系统可以是将波动可再生能源整合到电网中的可靠解决方案[2] [3]。此外,还将模拟单个能量存储(电池),以查看与双/混合能源存储的比较。提出的解决方案是通过应用杂交概念来提高系统效率,
在大多数金属中的超导性是由于纵向自旋波的活性将电子结合到对成对中,以使Meissner效应以及静态磁场中的角动量响应产生。这些旋转波的大部分似乎是由晶格上的核自旋提供的。对于低质量实体(小于10-40 kg),在室温下,纵向旋转波不足以在室温下检测到它们,> 1000 O K。这些大规模的量子结构在1米处无处不在,在金属中也将存在于环境静态磁场弱且温度较低的空间中。这些巨大的玻色子收集可能是空间中重力检测到的暗物质的来源,这些实验提供了一个测试床以了解其特性。a
•至关重要的核物理学: - FRIB - 高功率ECR来源和高刚度光谱仪 - EIC - 复杂的相互作用区域磁铁 - JLAB - JLAB - 中心至12GEV升级•至关重要的基本能源科学至关重要的基本能源科学 - 新颖的端站磁铁 - 超导器 - 超导器 - 超导向器•融合的融合供货量和级别的融合式tokamaks and Stellactors-尤其是Compactact tokamaks
摘要:蛋白质tau的高磷酸化和聚集在阿尔茨海默氏病(AD)的发展中起关键作用。虽然丝状tau骨料的分子结构已确定为原子分辨率,但有关较小的可溶性聚集的可用信息却少得多,这些信息被认为更具毒性。传统技术仅限于大量措施,并难以鉴定复杂的生物样品中的单个聚集体。为了解决这个问题,我们开发了一种新型的单分子下拉测定法(MAPTAU),以检测和表征AD和控制后大脑和生物流体的单个TAU聚集体。使用map-tau,我们报告了使用超分辨率显微镜测量的TAU聚集体的数量以及圆形的大小和圆形性,从而揭示了Tau骨料形态的AD特异性差异。通过调整MAPTAU,使用两色重合检测来检测单个聚集体中的多个磷酸化标记,我们得出了单个凝集的组成曲线。我们发现,含有多种磷酸化的80%以上的tau聚集体的AD特异性磷酸化谱,而年龄匹配的非AD对照组为5%。我们的结果表明,MAPTAU能够鉴定出在不同位点磷酸化的Tau聚集物的特异性亚p,这些tau骨料在不同的地点是看不见的,这些方法对其他方法看不见,并能够研究疾病机制和诊断。
1。智能电荷控制BMS将配备动态电荷控制算法,可以根据电池的当前状态调整充电率。这将确保电池以最佳速度充电,从而防止过度充电并最大化其寿命。2。热管理系统将采用集成温度传感器和冷却机制来监视和调节电池的工作温度。这将有助于减轻过热的风险,从而导致热失控并且可能导致灾难性的失败。3。除主要BMS外,该系统还将结合冗余安全功能,例如基于硬件的电压和电流保护,以提供针对潜在故障或故障的额外防御。通过实施这种全面的方法,电动汽车电池保护系统将确保最佳性能,延长寿命,并增强了车辆电源的安全性,最终有助于电动汽车的广泛采用和可靠性。框图
