化石燃料的消耗和日益紧迫的环境问题。[1,2] 人们投入了大量研究精力来开发各种类型的清洁能源转换和存储技术;这些密集的研究活动导致了太阳能电池、风力涡轮机、可充电电池 (RB) 和超级电容器的开发和商业化取得了巨大进展。[3–8] 金属卤化物钙钛矿太阳能电池 (PSC) 的快速发展代表了可再生能源转换领域最新和最令人兴奋的发展的一个极好例子。 [9–15] 由于其可调的带隙、[16] 高载流子迁移率、[17–19] 大的光吸收系数、[20] 和低的形成能,[21] 进展能够将光电转换效率 (PCE) 从 2009 年的 3.8% 迅速提高到 2019 年的 25.2%。[9,22] 每个组成部分的研究贡献对这一进展都不可或缺,这些进展包括调整化学成分和加工方法、控制晶体度和形貌、以及设计表面/界面缺陷。[23,24]
摘要。校园内具有开环地热系统流出流的新建筑物为学生驱动的环境化学课程提供了有力的背景。在不到一年的时间里,沿溪流前端的岩石已经开始变成橙色(Rusty),这已成为学生中的好奇心。结果,通过沿流的原子吸收光谱法监测铁和钙浓度,以研究金属沉积过程。沿流沿流中的岩石,流中铁和钙浓度的氧化铁沉积沿流。正如预期的那样,河流和钙的浓度下降了溪流,较小的装饰瀑布后,浓度下降的浓度特别较大。沉积在岩石上的氧化铁的浓度也以与河流溶解的铁下降相似的速度下降,这强烈表明岩石上的沉积是去除铁的主要模式。在运行不到一年的时间里,铁和钙的浓度在进入溪流后立即开始下降,表明该流的前端尚未饱和。环境化学课程计划在随后的几年中重复这些研究,以监视/何时何时饱和,并且沉积过程开始向下游移动。
