AMTE Power是英国领先的电池制造商之一,配备了电动汽车和BESS产品。 我们位于苏格兰瑟索的制造工厂可以将其根源追溯到锂离子电池电池技术的诞生。 现在,我们正在为零净世界开发新技术。 2027年,我们将在邓迪的第一个Gigafactory开始生产我们的细胞。AMTE Power是英国领先的电池制造商之一,配备了电动汽车和BESS产品。我们位于苏格兰瑟索的制造工厂可以将其根源追溯到锂离子电池电池技术的诞生。现在,我们正在为零净世界开发新技术。2027年,我们将在邓迪的第一个Gigafactory开始生产我们的细胞。
比较锂离子和钠离子电池的能量密度的图显示,锂离子电池的能量密度比钠离子电池更高。锂离子电池的能量密度范围为100至265 WH/kg,而钠离子电池的能量密度为80至150 WH/kg。这意味着锂离子电池更适合需要高能密度的高能应用。总体而言,该图支持锂离子和钠离子电池之间的特征比较,表明锂离子电池具有较高的能量密度,而钠离子电池的成本较低,循环寿命更长。在这些电池类型之间进行选择时,重要的是要考虑应用程序的特定要求以及性能,成本和安全性之间的权衡
摘要 合金材料(如硅、锗、锡、锑等)具有高容量、合适的工作电压、地球资源丰富、环境友好和无毒等特点,是下一代锂离子电池(LIBs)和钠离子电池(SIBs)有前途的负极材料。虽然最近报道了一些有关这些材料的重要突破,但它们在合金化/脱合金过程中剧烈的体积变化会导致严重的粉碎,从而导致循环稳定性差和安全风险。虽然合金的纳米工程可以在一定程度上缓解体积膨胀,但仍存在其他缺点,例如初始库伦效率和体积能量密度低。由纳米颗粒和纳米孔组成的多孔微尺度合金继承了微米和纳米特性,因此多孔结构可以更好地适应锂化/钠化过程中的体积膨胀,从而释放应力并提高循环稳定性。本文介绍了多孔材料的最新进展
16. 摘要 科罗拉多州交通部多年来一直使用 MgCl 2 进行防冰和除冰。有人担心这些化学物质可能会影响汽车和卡车的各种部件。在科罗拉多大学博尔德分校材料实验室进行的这项实验研究中,选择了汽车行业的代表性金属,以比较它们在暴露于除冰盐 NaCI 和 MgCh 时的腐蚀行为。在测试过程中使用了试剂级 MgCh 和 CDOT 使用的 MgCh(含有腐蚀抑制剂)。对选定的金属采用了两种测试方法:SAE 12334(加速循环测试);和 ASTM B 117(连续喷涂测试)。SAE 12334 的测试环境提供了循环暴露,这更好地模拟了实际使用条件。尽管 CDOT 规范规定氯化镁的腐蚀性必须比氯化钠低 70%,但 SAE J2334 获得的实验结果表明,MgCl 2 对测试的裸露金属的腐蚀性比 NaCl 更强。腐蚀程度各不相同,对于某些金属只有轻微差异,而对于 SS410 则高出 13 倍。与 SAE 12334 的结果相比,ASTM B 117 的实验结果显示出不一致,尤其是对于不锈钢 SS410,NaCI 对其的腐蚀性比 MgCI 2 更强。实验还表明,在三种情况下,MgCl 2 和 NaCl 的混合物对金属的腐蚀比单一盐(MgCl 或 NaCl)略高