◼ 通过同时应用“快速生长”和“大鱼片”特性,水产养殖成本可降低至目前的 2/3。◼ 通过将品种改良扩展到其他特性和物种,可以为解决蛋白质短缺、创造就业和促进出口做出贡献。◼ 从长远来看,预计将建立一个“品种改良平台”,以根据消费者/生产者的需求发展养殖。
大力鼓励促进科学、自动化和技术融合以解决 Cobb 挑战的研究项目。CRI 寻求与研究人员合作,这些研究人员考虑如何使用技术和自动化来支持本申请中确定的关键重点领域内的解决方案。人工智能、数据系统收集、数据系统管理、机器人技术和/或自动化是 Cobb 寻求利用的技术,以改进我们的基因产品和生产效率。大力鼓励包括应用生物技术进行品种改良在内的战略研究。
受到扎伊纳布自身成功的启发,妇女们看到了将储蓄转化为可行投资的机会。行为改变交流中心 (CBCC) 下设立的青年和妇女质量中心 (YWQC) 以及通过 CIMMYT 开展的非洲加速品种改良和种子系统 (AVISA) 项目进一步支持了这一进程。这些中心成为机遇中心,通过成本分摊安排提供必要的基础设施和资源,例如获得认证种子、全面培训和多种作物脱粒机等先进农业技术。这项技术不仅提高了效率,还确保了加工种子的质量,提高了其市场价值。
以棉花为例,引入从土壤细菌苏云金芽孢杆菌 (BT) 中提取的 cry1Ac 和 cry2Ab 基因,可使本地棉花植株产生内毒素,以自然方式对抗棉红铃虫。BT 棉花利用这一优势帮助农民自然对抗棉红铃虫,这种虫害是棉农最常见的害虫。基因组编辑和基因工程的基本区别在于,前者不涉及引入外来遗传物质,而后者则涉及。在农业方面,这两种技术都旨在产生产量更高、更能抵抗生物和非生物胁迫的变种。在基因工程出现之前,这种品种改良是通过选择性育种来完成的,即仔细地将具有特定性状的植物杂交,以在后代中产生所需的性状。基因工程不仅使这项工作更加精确,而且还使科学家能够更好地控制性状的发展。
1. 由于紧缩的货币政策、新冠疫情刺激措施的取消、持续的全球逆风以及更广泛的财政整顿,预计 2023 财年国内生产总值 (GDP) 增长在上一财年增长 5.6% 之后将放缓至 1.9%。农业增长从上一财年的 2.2% 上升至 2023 财年的 2.7%,因为受季风有利和种子品种改良的影响,稻谷、小麦、玉米等谷物产量增长了 3.9%。工业仅增长了 0.6%,而制造业和建筑业在 2022 财年增长了 10.8%,原因是利率上升、进口限制(2023 财年前五个月)以及国内外需求疲软。由于批发和零售贸易萎缩,以及运输和仓储因国内需求减弱而小幅扩张,服务业增速较 2022 财年的 5.3% 几乎下降了一半。
关键信息来自多种来源物种的 GRF-GIF 嵌合蛋白可增强野生和栽培生菜的体外再生。此外,它们还可增强多种生菜的再生,包括奶油生菜、长叶莴苣和卷叶莴苣。摘要植物体外再生的能力已被用于组织培养系统中的植物繁殖、植物转化和基因组编辑。体外再生的成功通常取决于基因型,并且仍然是农杆菌介导的转化及其在某些作物品种改良中的应用的瓶颈。操纵在植物发育中起关键作用的转录因子,如 BABY BOOM、WUSCHEL 和生长调节因子 (GRF),已经提高了多种植物的再生和转化效率。在这里,我们比较了来自多个物种的 GRF–GIF 基因融合对提高四种野生和栽培莴苣(Lactuca spp. L.)基因型的再生效率和发芽频率的效果。此外,我们表明,与对照相比,具有突变 miRNA 396 结合位点的 GRF–GIF 可提高再生效率和发芽频率。我们还提出了一种共转化策略,以提高转化效率和恢复含有目的基因的转基因植物。该策略将增强其他莴苣基因型和菊科其他作物的转基因植物的恢复。
栽培草莓(Fragaria ×ananassa)是最近驯化的一种具有世界经济价值的水果品种。因此,人们对持续品种改良有着浓厚的兴趣。基因组学辅助改良,包括使用 DNA 标记和基因组选择,促进了草莓育种过程中许多关键性状的显著改良。CRISPR/Cas 介导的基因组编辑允许在目标基因组中进行定向突变和精确核苷酸替换,从而彻底改变了功能基因组学和作物改良。基因组编辑开始在更具挑战性的多倍体作物(包括异源八倍体草莓)中获得关注。八倍体草莓的高质量参考基因组和全面的亚基因组特异性基因分型和基因表达谱数据的发布将导致使用 CRISPR/Cas 进行性状发现和修饰的数量激增。基因组编辑已成功应用于修改多种草莓基因,包括花青素含量、果实硬度和对采后病害的耐受性。然而,关于与果实质量和产量相关的许多其他重要育种特性的报告仍然缺乏,这表明需要对草莓进行精简的基因组编辑方法和工具。在这篇综述中,我们概述了涉及 CRISPR/Cas 基因组编辑以改良草莓品种的知识和育种工作的最新进展。此外,我们还探讨了该技术在改良其他蔷薇科植物物种方面的潜在应用。
摘要:高效的植物转化和组织培养方法对于植物的遗传工程和先进的分子育种至关重要,但在栽培的八倍体草莓 (Fragaria × ananassa) 中,这两种方法都尚未得到很好的建立。在本研究中,针对两个基因不同的草莓品种 Sweet Sensation VR Florida 127 (FL127) 和 Florida Brilliance (FB) 建立并优化了一种芽再生方法。从温室生长的植物中获得的尖端、节点和叶柄的匍匐茎段被用作外植体,用于比较芽再生率。'FL127' 在优化条件下显示出最高的芽再生频率,而'FB' 在相同培养基类型中对较低浓度的 N6-苄基腺苷 (BA) (0.01 mg/L) 的反应最佳。 'FL127' 和 'FB' 中体细胞胚从匍匐茎尖 (RT) 向芽再生的平均转化频率分别为 42.8% 和 56.9%。利用这些优化的组织培养条件,进行农杆菌介导的 CRISPR/Cas9 基因编辑,以检查品种 FL127 中八氢番茄红素去饱和酶 FaPDS 的转化和靶基因编辑效率。总共 234 个外植体接种了含有 Cas9-FaPDS 的农杆菌,导致愈伤组织诱导效率为 80.3%,其中 13.3% 的再生植物表现出部分或完全的白化表型。编辑子代的扩增子测序表明,所有 FaPDS 同源拷贝的向导 RNA (gRNA) 靶位点或侧翼区域均发生了突变(替换、插入和缺失)。我们的研究结果为草莓功能基因组学研究和基因编辑指导的品种改良提供了有效的组织培养和转化方法。